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Deep Learning Enhanced Volumetric Photoacoustic Imaging
of Vasculature in Human

Wenhan Zheng, Huijuan Zhang, Chuqin Huang, Varun Shijo, Chenhan Xu, Wenyao Xu,
and Jun Xia*

The development of high-performance imaging processing algorithms is a
core area of photoacoustic tomography. While various deep learning based
image processing techniques have been developed in the area, their
applications in 3D imaging are still limited due to challenges in computational
cost and memory allocation. To address those limitations, this work
implements a 3D fully-dense (3DFD) U-net to linear array based photoacoustic
tomography and utilizes volumetric simulation and mixed precision training
to increase efficiency and training size. Through numerical simulation,
phantom imaging, and in vivo experiments, this work demonstrates that the
trained network restores the true object size, reduces the noise level and
artifacts, improves the contrast at deep regions, and reveals vessels subject to
limited view distortion. With these enhancements, 3DFD U-net successfully
produces clear 3D vascular images of the palm, arms, breasts, and feet of
human subjects. These enhanced vascular images offer improved capabilities
for biometric identification, foot ulcer evaluation, and breast cancer imaging.
These results indicate that the new algorithm will have a significant impact on
preclinical and clinical photoacoustic tomography.

1. Introduction

Photoacoustic (PA) tomography (PAT), a hybrid technique com-
bining high optical contrast and deep acoustic penetration, has
emerged as a promising medical imaging modality. In PAT, a dif-
fused laser pulse illuminates the region of interest to excite PA
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waves, which are received by the transduc-
ers placed at different locations.[1–3] To re-
construct an image of the optical deposi-
tion, researchers have developed the de-
lay and sum (DAS) algorithm, which back
projects raw-channel data into the imag-
ing domain.[4] Among various transducer
arrays applied in the PAT, linear transducer
arrays are one of the most commonly used
due to their low costs and wide clinical
adoption.[5,6] However, the linear array was
designed for two-dimensional (2D) imag-
ing and its three-dimensional (3D) imaging
performance is poor. For example, the el-
evation resolution of a linear array is typi-
cally a few times worse than its axial and
lateral counterparts.[7,8] The linear array is
also subject to the limited-view problem,
causing certain features to be invisible in
the reconstructed image.[9] Moreover, elec-
tromagnetic interference (EMI) noises are
commonly seen in PAT images due to the
weak signal and strong laser interferences,

which further degrades the linear array PAT performance.[10] Ad-
dressing these problems would enable wider adoption of linear
array based 3D PAT and facilitate its clinical translation.[11–14]

Deep learning assisted medical imaging enhancement has
seen tremendous progress in the last decade, due to increases
in computing power and open-source networks.[10,15–17] Several
deep learning methods have been proposed in PAT and they
have demonstrated promising enhancements.[17–21] Notably, a
few groups have implemented deep learning in 3D PAT. For in-
stance, Hauptmann et al. utilized 3D images from computerized
tomography (CT) scans to train the neural network.[22] The al-
gorithm could recover detailed vasculature from under-sampled
data obtained by an optical ultrasound sensor-based PA system.
Guan et al. developed a Dense Dilated UNet for 3D photoacoustic
imaging reconstruction in a cylindrical geometry with sparse data
sampling.[23] Recently, Choi et al. implemented a 3D deep learn-
ing approach for a hemispherical transducer array to achieve high
frame rate functional 3D PAT with under-sampled data.[18] It can
be seen that most of these studies focused on addressing the
sparse sampling problem and therefore require a much smaller
dataset for training (less than 1500 volumetric images). In addi-
tion, the specialized transducer arrays employed in these stud-
ies may not directly translate to clinical applications, which typi-
cally utilize linear or curve-linear transducer arrays. As a result,
although these studies have shown enhanced image quality, there
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are limited demonstrations of using the neural network in prac-
tical and clinical human applications.

In terms of linear array based deep learning research, Liu. et
al. recently proposed a sparse-sampling reconstruction method
to recover the volumetric image acquired from a linear array
transducer.[24] However, the algorithm focused on sparse sam-
pling instead of resolution improvement and the number of
transducer elements used in their study is fewer than most lin-
ear arrays. Our group also proposed an algorithm named Deep-
E, which converted the 3D problem into 2D by simulating and
training data in the axial-elevation plane.[25] While promising
results were demonstrated in human data, the algorithm also
has a few limitations. First, the algorithm processes data only in
the 2D space without exploring the connection among frames.
Therefore, slight misalignments were observed in Deep-E pro-
cessed images, making certain vessels look discontinuous. Sec-
ond, as the 2D space contains fewer features than 3D, underfit-
ting is more likely to happen.[26] Finally, the training only con-
siders thermal noise, while the actual system also has EMI noise.
In a follow-up study, we combined Deep-E with 3D reconstructed
data and added experimental noise to the training.[27] However,
since the training is still performed in 2D, the misalignment be-
tween frames still exists.

To overcome these issues, we introduce 3D fully-dense U-net
(3DFD U-net) to improve the 3D imaging performance of lin-
ear array based PAT. To ensure an accurate simulation of exper-
imental conditions, we implemented several improvements in
the study. First, the transducer parameters were precisely defined
in 3D to mimic the actual transducer used in the experiment.
Second, the simulation volume was defined based on the trans-
ducer’s receiving aperture to save computing time and memory.
Third, to provide effective EMI noise removal, experimental noise
was added to simulated data. Finally, 3DFD U-net was imple-
mented in our deep learning model to produce precise predic-
tions in 3D space. Compared to 3D U-net,[28] 3DFD U-net can
effectively capture more vascular features from 3D PA images
because of the extra dense connection provided in the network.
Our results demonstrated that our learned model could precisely
recover the sizes of objects and improve the continuity of the
vascular structure. Meanwhile, the overall image quality was im-
proved as EMI noises and artifacts were greatly removed. More-
over, with reduced noises, vessels from deep regions could be
revealed, which is essential for deep-tissue PAT. In addition, fea-
tures distorted by the limited-view problem were also partially re-
covered in both simulated and in vivo validation. These improve-
ments allow us to bring the algorithm to various human clinical
imaging applications.

2. Experimental Section

2.1. Photoacoustic Imaging System

Details of the imaging system have been described previously
in.[8] Briefly speaking, we used a compact PAT system where the
light illumination and the acoustic detection are coplanar with
each other. PA signals were generated by a 10 Hz Nd: YAG Laser
(Continuum Inc.) firing 1064 nm output with ≈700 mJ pulse en-
ergy and <10 ns pulse width. The output from the laser was cou-

pled to a bifurcated fiber bundle with a 1 cm diameter input and
9 cm line-shape output. PA signals were detected by a customized
2.25 MHz linear array transducer (IMASONIC SAS) with 128 el-
ements. The transducer was designed to be waterproof with a cu-
bic shape for easy mounting and scanning in water. To improve
the detection efficiency, we used two dichroic mirrors to combine
acoustic and optic paths into the same plane.[5,8] As the line-shape
fiber bundle output and transducer are mounted parallel to each
other, this design also improves the system’s compactness. The
scanning head was mounted on a translational stage (McMaster-
Carr) integrated with a stepper motor for 3D scanning. During
scanning, objects were pressed against an imaging window lo-
cated above the scanning head. Signals from the transducer were
digitized by a 14-bit 256-channel Data acquisition (DAQ) unit (Ve-
rasonic Inc.) and transferred to the host computer for processing.
Q-switch signal output from the laser synchronizes the motor,
DAQ, and light delivery.

For human imaging experiments, all studies were approved
by the Institutional Review Board of the University at Buffalo,
under different study protocols for hand (STUDY00000171),
foot (STUDY00001165), and breast imaging (STUDY00000371).
Data presented in this study were selected from existing pool
of datasets. All human subjects provided informed consent after
fully understanding the implications of their participation. Sub-
jects were recruited within the university or by clinical collabo-
rators in the participating clinics. The recruited patients have ei-
ther confirmed chronic foot ulcer or breast cancer, as indicated by
their clinical reports. As the studies were not clinical trials, they
were not registered.

2.2. Artificial Neural Network

As shown in the modal training block of Figure 1, the proposed
3DFD U-net follows the conventional architecture of the fully
dense U-net,[29,30] except that it has 3D kernels. It maintains the
encoder and decoder structures to extract the most important
features without destroying the shapes of the images and makes
up for the losses produced in the encoder path.[31] Unlike the 3D
U-net, 3DFD U-net leverages the benefit of dense connectivity.
At the forward propagation steps, the dense block can provide
a more diverse set of features with high efficiency. In the dense
block, it creates additional feature maps that are generated based
on the original input and previously learned features. Moreover,
it can avoid the vanishing gradient problem and improve the
model performance during the backward propagation steps.
During training, the use of concatenation between each convo-
lutional layer enables gradient information to backpropagate to
the earlier layers directly. We also exchanged the max pooling
layers in the network. They were replaced by 2 × 2 × 2 convo-
lutional layers with a stride of two. It allows the model to learn
flexible spatial transformation in the encoder rather than the
rigid max pooling procedure.[32] RELU activation is exchanged
with ELU activation, as it has been shown to improve learning
speed in deeper residual networks.[33] An additional 3 × 3 × 3
convolutional layer was applied at the end of the decoding.
This refinement path can further improve the performance
of output images and remove the artifacts at a high spatial
resolution.[34]
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Figure 1. Workflow of the network training procedure. X, Y, and Z in the figure represent lateral, elevation, and axial directions of the transducer,
respectively.

2.3. Deep Learning Implementation

During training, the images were randomly split in a ratio of 8:2
for training and validation. The 3DFD U-net network training
was conducted on a workstation equipped with AMD Ryzen 9
3950X CPU, 128 GB RAM, and two NVIDIA GTX 3090 graphic
cards. For the hyperparameters, we used the Adam optimizer
to minimize the mean squared error loss with an initial learn-
ing rate of 1e-4 and a batch size of eight for 300 epochs along
with early stopping with a patience value of 10 which resulted in
training ending at 213 epochs. The total trainable parameters are
6052025. For the batch normalization, the momentum parame-
ter was set to 0.99 and the epsilon is 0.001. The loss function was
the mean squared error of the intensity between the last layer out-
put and ground truth per batch. To optimize training for speed
and memory usage we utilized mixed precision training[35] which
harnesses the native ability of GPUs to perform calculations us-
ing float16 values by casting weights, activations, and gradients
of the model to 16-bit floats. This smaller representation allows

for the model to be loaded and trained with effectively half the
memory and bandwidth normally required, which in turn, lets
us use larger batch sizes without sacrificing precision since a 32-
bit master copy of weights is maintained to recover gradients
smaller than 2−24 (approximately 5%). Similar to,[36,37] we also
implement a custom data loader using the Keras.utils.Sequence
interface of Tensorflow 2 that yields batched volumes at train-
ing time via a thread-safe generator instead of preallocating GPU
memory of the size of the total dataset. This lets us train with
a larger dataset than can be fit in GPU VRAM, in theory facili-
tating training with an infinite number of samples—realistically
limited by the storage and model’s representational capacity. The
increase in batch size from four to eight that mixed precision af-
fords speeds up training and lets the model learn from more data
in the same amount of time. The change to data loading means
we are no longer limited to 2400 samples that the 24 GB each
GPU’s VRAM can fit, and instead only load 8 samples per train-
ing step. While the overhead of reading from disk and copying in-
put tensor batches to the GPUs for each step is not insignificant,
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the performance gain from using mixed precision offsets this
with the effective time spent to process one volume going down
from ≈450 to ≈250 ms owing to greater parallelization from the
larger batch size. Furthermore, the value of exposing the model to
600 additional samples is reflected in the final validation mean-
squared error (MSE) loss of 2.56 (Figure S1, Supporting Infor-
mation). All networks were implemented using Python 3.7 with
a TensorFlow 2.6 backend. Total training took 35.5 hours.

2.4. Training Data Generation

We developed an effective simulation approach where the PA de-
tection mechanism closely mimics the experimental transducer
array, as shown in the data generation block of Figure 1. We used
the MATLAB-based acoustic simulation toolbox, K-wave, to gen-
erate PA sinograms in 3D space.[38] All 3D vasculature images
were created using the Insight Segmentation and Registration
Toolkit (ITK).[39] The simulated vessels have diameters ranging
from 0.1 to 4 mm,[40] which correspond to primary features de-
tectable by our linear array PAT system.[41] Each 3D vasculature
matrix has a size of 30 × 86 × 50 mm3 along axial, lateral, and el-
evation directions, respectively, with a pixel size of 0.1 mm. The
vasculature matrix was placed 30 mm away from the transducer
surface to mimic experimental scenarios. A linear transducer ar-
ray with 128 curved elements was defined at the top of the sim-
ulation environment. To preserve imaging features, the trans-
ducer properties, including element height, receiving angle, focal
zone, and frequency response, were defined based on the actual
imaging system. To mimic scanning, the transducer array moved
along the elevation direction (marked by the orange arrow in
Figure 1) in the 3D environment at 0.2 mm step size. To improve
the computing efficiency, for each scanning, the simulated re-
gion moved along with the array, as shown in the yellow region in
Figure 1 data generation block. The size of the simulated volume
for each scanning step is 30 × 86 × 15 mm3 along axial, lateral,
and elevation directions, respectively. Each transducer element
was composed of several voxels that received signals separately,
and these signals were further combined into an A-line signal be-
longing to the corresponding transducer element. Then, A-line
signals from all transducer elements were stacked in order along
the lateral direction to form a 2D sinogram, which represents raw
data acquired at one scanning location. We then used 2D-stack
reconstruction to generate input images for the network. In 2D
stack reconstruction, we first used back projection to reconstruct
a cross-sectional image for each scanning position.[42] The recon-
structed 2D images were then stacked into a 3D matrix based on
their spatial positions during scanning. EMI and system noise
acquired from the experimental system was then applied to the
simulated 3D matrix. After that, the data was divided into several
cubes with 128 pixels along each dimension as the network input
(shown in Figure 1 validation block). The position of each cube in
the 3D matrix was recorded so that they could be combined into
the 3D matrix again after processing.

2.5. Image Fusion for In Vivo Data Enhancement

As each 3D cube was processed separately in the learned model,
there could be slight misalignments at the cube boundaries when

they were re-combined (Figure S2a, Supporting Information). To
improve the continuity, we developed an image fusion method
for the output data. In this method, a normalized nonlinear
weighting map (M) was applied to the boundary region of ad-
jacent matrices.[43] As shown in Eq. 1, the map contains an expo-
nential function that defines the weighting based on the position.
Here, x represents the index of the matrix M along lateral and el-
evation, respectively. A is the width of the overlaid regions, which
is 32 in most of our data (the cube size is 1283).

M(x) = ex∕A − 1
e − 1

1 ≤ x ≤ A (1)

The maps were applied during image fusion to eliminate sud-
den changes at the edge of the cubes. Therefore, the misalign-
ment among matrices was eliminated and the image continuity
was improved. The images before and after fusion are shown in
depth-encoded MAP (maximum amplitude projection) images in
Figure S2a,b, respectively.

3. Results

3.1. Numerical Validation

We first validated the performance of our algorithm in three sets
of numerical data. None of these data were used in training.
For easy comparison, all images were normalized and shown
in depth-encoded MAP images along either lateral and eleva-
tion directions (top view) or axial and elevation directions (cross-
sectional view). The colors from blue to red represent locations
from shallow to deep, starting from the reconstruction depth
(30 mm from the transducer array surface). The other axis in the
color map represents the normalized PA intensity. This represen-
tation allows us to reproduce both PA intensity and signal depth
in a 2D image. All depth-encoded images in the following sec-
tions are presented in the same manner. Figure 2a–c shows im-
ages reconstructed by the 2D stack, 3D focal-line,[44] and 3DFD U-
net algorithms, respectively. Figure 2d displays the ground truth
image for comparison. As 2D stack reconstruction does not ex-
plore the connection among frames, the reconstructed image
looks blurry along the elevation direction, and the background
noise is also obvious. Due to the poor elevation resolution, it can
be seen that the vessels extended along the lateral direction exhib-
ited a thicker size compared to their elevational counterparts. The
3D focal-line algorithm slightly improves the elevation resolution
based on the virtual detector concept. However, it still cannot re-
cover the true size of the vasculature. Moreover, both methods are
affected by the limited view problem. For instance, vessels indi-
cated by white arrows in Figure 2 extend along the axial direction
and is not fully visible in Figure 2a,b. In comparison, outputs
from 3DFD U-net provide significant improvements in terms of
improved image resolution and reduced noise level. Vessels in
3DFD U-net output are also displayed more continuously. In ad-
dition, features distorted by the limited view problem can be par-
tially recovered, addressing a major issue in linear array-based
PAT. It can be observed that vessels indicated by white arrows
extend to the deep region rapidly and therefore, cannot be fully
detected by the linear transducer array (Figure 2a). In compari-
son, 3DFD successfully recognized these vessels from the input
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Figure 2. Network performance evaluation using numerical data. a) (top to bottom) Three sets of input data generated by the 2D stack reconstruction.
For each set, the top view is shown at the top and the cross-sectional view is shown at the bottom. b) The same set of data generated by 3D focal-line
reconstruction. c) Output images from 3D fully-dense (3DFD) U-net. d) Ground truth of the three datasets. e) Bar charts of structural similarity index
measure (SSIM), peak signal-to-noise ratio (PSNR), and mean-squared error (MSE) quantification among three approaches (top to bottom). Scale bar:
10 mm. x, y, and z denote the lateral, elevation, and axial directions of the transducer array, respectively.

and restored them in the processed image (Figure 2c). Similar
improvements can also be observed from the in vivo validations
presented in the next section.

We also quantitatively evaluated the quality of outputs from
two algorithms by calculating the structural similarity index mea-
sure (SSIM), the peak signal-to-noise ratio (PSNR), and MSE of
each image. The ground truths in Figure 2d denote the references
used for calculation. The bar chart featuring the quantified values
can be found in Figure 2e. We can see that the output image of
3DFD U-net provides higher SSIM, PSNR, and MSE. These in-
dicated that our deep learning algorithm could reconstruct high-
quality images with higher resolution than the conventional 2D
stack image.

3.2. Phantom Validation

We then tested the performance of the trained network in phan-
tom. In this test, we verified whether the algorithm could restore
the true size of the object instead of simply shrinking it. The
phantom was made with a transparent sheet printed with four
black lines with diameters of 0.5, 1.0, 2.0, and 3.0 mm, respec-
tively (Figure S3, Supporting Information). The phantom was
placed 50 mm away from the transducer array surface, which
is out of the transducer’s focal zone. We first placed the phan-
tom parallel to the transducer and then rotated it 90 degrees in
the second scanning. The two experiments allow us to evaluate
the performance along the elevation and lateral directions of the
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Figure 3. True object size recovery validation using printed phantom placed along lateral and elevation directions. a) Input images of lines extended
along the lateral direction in the top view and cross-sectional view (along the yellow dashed line in top row). b) Output images of corresponding sections
of (a). c) Input image of lines extended along elevation direction in the top view and cross-sectional view (along the yellow dashed line in top row). d)
Output image of corresponding sections of (c). e) Left panel: Intensity profiles acquired from cross-sectional images in (a) and (b); Right panel: Intensity
profiles acquired from cross-sectional images in (c) and (d). f) Left panel: Elevation resolution quantified from input, output, and ground truth. Right
panel: Lateral resolution quantified from input, output, and ground truth. Scale bar: 5 mm. x, y, and z denote the lateral, elevation, and axial directions
of the transducer array, respectively.

transducer, respectively. The top row of Figure 3a,c shows the
depth-encoded 2D-stack images for the phantom placed in two
orientations. The bottom row of Figure 3a,c provides the cross-
sectional images along the yellow dash-line in the top row. Due
to the poor elevation resolution, the four lines look much wider
in Figure 3a. In comparison, the lines in Figure 3c look sharper
as the system’s lateral resolution is better than that of elevation.
However, the 0.5-mm line still looks slightly wider than its true
size as it is smaller than the lateral resolution. Figure 3b,d show-
cases the output images from the network and their correspond-
ing cross-sectional images along the yellow dash lines. It can be
seen that the line widths in Figure 3b are significantly reduced
due to the improved elevation resolution, while those in Figure 3d
remain unchanged. The left and right panels of Figure 3e illus-
trate the PA intensity profile along the dashed lines in Figure 3a–
d, respectively. Blue and green curves represent the input and
output intensity profiles, respectively. We further quantified the
object size along lateral and elevation directions based on the full
width at half maximum (FWHM). The results are summarized

in Figure 3f. It can be seen that the output diameters were sim-
ilar to that of the ground truth along both elevation and lateral
directions.

3.3. In Vivo Validation

Following promising results from numerical and phantom vali-
dation, we deployed the 3DFD-Unet to the in vivo data to further
validate its performance.

Figure 4a,e demonstrates MAP images of human palms of
two subjects reconstructed by the 2D-stack algorithm. Due to
strong skin surface signals and reconstruction artifacts, vascu-
lature underneath the skin layer cannot be visualized. Also, the
vascular structures were exhibited in a discontinuous manner,
which is anatomically inaccurate. In addition, the poor eleva-
tion resolution makes it hard to reveal vessels extended along
the lateral direction. Figure 4b,f denotes enhanced output images
from our algorithm of two subjects, respectively. Due to improved
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Figure 4. Validation in human palm data. a,e) Depth-encoded input image reconstructed by 2D stack reconstruction. b,f) Output image of (a) and
(e), respectively. c) Top and cross-sectional views of regions marked by a yellow dashed box from input and output images of subject 1. d) Top and
cross-sectional views of regions marked by a red dashed box from input and output images of subject 1. g) Top and cross-sectional views of regions
marked by red dashed box from input and output images of subject 2. h) Top and cross-sectional views of regions marked by yellow dashed box from
input and output images of subject 2. i) signal-to-noise ratio (SNR) quantification of four vessels from input and output images. Scale bar: 10 mm. x, y,
and z denote the lateral, elevation, and axial directions of the transducer array, respectively.

resolution, finer vasculatures can be observed in all directions. It
can also be seen that most skin surface signals were removed
by the algorithm, allowing for the visualization of deep vessels.
While the skin surface signals were not introduced in the train-
ing data, they were still removed because the skin features look
different than vasculature and thus were treated as noise by the al-
gorithm. For better illustration, we selected two regions (marked
in yellow and red dashed frames) from each data and plotted the
enlarged and cross-sectional views in Figure 4c,d,g,h. It can be
seen from the input image that vasculature was not exhibited
clearly due to the low spatial resolution and skin artifacts images.
In comparison, finer vascular structures can be visualized from
output images. The bottom row of Figure 4c,d,g,h demonstrates
the cross-sectional images. It can be seen that deep vessels are
more visible in the output images and the vessel discontinuity
caused by the limited view problem is reduced. A detailed com-
parison of skin removal using different approaches can be found
in Figure S4 (Supporting Information). To further verify our algo-
rithm’s performance, we chose various vessels and quantified the

signal-to-noise ratios (SNR). Figure 4i demonstrates the SNR val-
ues of input and output images from each vessel. As shown in the
bar chart, vessels from output images exhibit higher SNR com-
pared to the input. In general, output images achieved remark-
able improvement in different aspects, exhibiting clear and con-
tinuous vasculature. We also conducted an imaging study on the
human forearm, where similar improvements can be observed.
Details can be found in Figure S5 (Supporting Information).

3.4. Application Case Studies

3.4.1. 3D Finger Vein Biometrics Resilience Analysis

First, we validate the 3DFD U-net potential for biometrics au-
thentication. Biometrics entropy (BE) has been widely adopted
in evaluating the security performance (capacity) of authentica-
tion systems (e.g., password and face authentication).[45] It mea-
sures the extra certainty that the authentication system provides
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Figure 5. a) Entropy quantification of different biometrics authentication approaches. b–d) Photoacoustic (PA) images of the same palm and the ex-
tracted vein biometric feature points. b) 2D stack; c) 3D U-net; d) 3D fully-dense (3DFD) U-net.

to identify a specific person from all the people in the world.
The more certainty a system can provide, the higher security
this system maintains. Recent studies explored utilizing the
unique palm vein structure captured by a photoacoustic sensor
for biometric authentication.[46,47] Given the better performance
of 3DFD U-net compared to 2D stack and 3D U-net, we anticipate
that the extra details of vein structure provided by 3DFD U-net
can provide more security for this application, and BE can quan-
titatively measure this improvement. To validate our hypothesis,
we use the same method stated in[48] to extract the vein structure
features and examine the entropy of the vein structure features
captured by the three mentioned PA Vein methods. The results
are shown in the bar chart (Figure 5a) below. We observe 3DFD U-
net approach carries much more identity information compared
with the 2D stack and 3D U-net methods. The increase of bio-
metrics entropy is around 73.5 and 60 bits, respectively. This in-
dicates that the vein structure details revealed by the proposed
novel 3DFD U-net approach are highly related to the critical iden-
tity information and can bring extra security to the system based
on the proposed system. With the help of significant entropy im-
provement, the security level of palm vein biometrics surpasses
the level of face biometrics, which is a widely used biometrics

in consumer electronics. As shown in Figure 5b–d, we observe
three representative areas in the vein feature visualization. In ar-
eas 1 and 2, we can see the 3DFD U-net dramatically improves
the clarity of vein imaging, thereby providing more identity infor-
mation that can be captured by the feature extraction algorithm,
i.e., more feature points. In area 3, by comparing the features of
3D U-net and 3DFD U-net, we can see 3DFD U-net reveals veins
in deeper tissues, which brings extra identity information as cap-
tured.

3.4.2. Imaging of Foot Ulcer

In this study, we imaged the foot vasculature of patients with pe-
ripheral artery diseases (PAD) and chronic foot ulcers. The goal
is to identify whether the enhanced vascular images provided a
better clinical assessment of tissue perfusion and identification
of leaky vessels (increased endothelial permeability).[49,50] Images
shown in Figure 6 came from a patient with ulcers on the right
foot and amputation of the big toe (marked with the red dashed
zone), while the left foot looked normal. Figure 6a,b displays the
original and processed PA depth-encoded MAP images of the

Adv. Sci. 2023, 2301277 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301277 (8 of 12)
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Figure 6. Photoacoustic imaging of foot ulcer. a,e) Input images of the healthy and ulcered foot, respectively. b,f) Output images of (a) and (e), re-
spectively. c,g) Blood leakage quantification from healthy and ulcered foot, respectively. d) Leakage index quantification on four subjects. h) box plot of
quantified leakage index from ulcered and healthy foot. Scale bar: 10 mm. x, y, and z denote the lateral, elevation, and axial directions of the transducer
array, respectively.

healthy foot, while Figure 6e,f shows the images of the ulcered
foot. The proposed neural network significantly improves image
quality by enhancing vessel continuity and accurately recovering
the vessel size.

Leakage quantification is an important aspect in evaluating the
perfusion condition of subjects with chronic wounds, as poor
blood circulation often leads to leaking vessels in these areas.[51]

However, automatically quantifying leakage based on PA images
is challenging, especially in the absence of ground truth vessel in-
formation for in vivo images. Here, we capitalized the enhanced
vascular image provided by 3D FD UNet to quantify the leakage.
The algorithm involves binarizing the input (Figure 6a) and out-
put (Figure 6b) PA images and counting the total number of non-
zero pixels in each binarized image. The leakage index is then
computed by the ratio of pixel numbers in the input and 3D FD
UNet enhanced images. A higher index thereby indicates a blur-
rier vessel due to leakage. Figure 6c,g presents a comparison of
the binarized images of the two feet. The ulcered foot exhibits
a larger leakage area (indicated in pink). Additionally, the neural
network successfully recovered the vessels affected by the limited
view problem (marked in green).

The model and proposed algorithm were tested on four sub-
jects (two with ulcers on the left foot and two with ulcers on
the right foot), and the quantification results are summarized in
Figure 6d,h. All subjects included in our study had peripheral
artery disease (PAD) and toe amputation (Table S1, Supporting
Information). The leakage indices of the ulcered feet were con-
sistently higher than those of the healthy feet, and the box plot
analysis revealed a larger variance in the leakage index for the

ulcered feet compared to the healthy feet. This variability is ex-
pected due to individual differences in condition. These results
demonstrate that the proposed model effectively recovers vessels,
enabling quantitative estimation of vessel leakage.

3.4.3. Imaging of Breast Cancer

The last case study is the imaging of breast cancer. As the progres-
sion of breast cancer is often associated with angiogenesis,[52] the
vascular features captured by PA imaging have good potential for
tumor screening and diagnosis.[8,53] In Figure 7a,b, we presented
breast image from a patient volunteer with dark skin color and a
breast cup size of D. Based on the clinical report, her left breast
has two tumors. One is 3 × 3 × 4 mm3 in size and is located at
3 o′clock and 2 cm from the nipple. The other is 6 × 4 × 3 mm3

in size, located at 4 o′clock and 2 cm from the nipple. The tu-
mor subtype is luminal A, which is associated with prominent
external vessels in PA images and hence high vessel density.[54]

The nipple region was marked by a white circle in Figure 7a,c. As
the images were presented in the frontal view, we were able to lo-
cate the suspicious regions based on the clinical report and mark
the area with a red dashed box. As the patient has a dark skin
color, the breast vessels were shadowed by the skin contrast, as
indicated by the white arrow in Figure 7a,b. These factors made
it challenging to clearly visualize the breast’s vascular structure.
Figure 7c,d denotes the output of the 3DFD U-net. The skin ab-
sorption signals were effectively removed, revealing the vessels
in the deep tissue. We observed that the system noise and skin

Adv. Sci. 2023, 2301277 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301277 (9 of 12)
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Figure 7. In vivo validation on malignant human breast data. a) Patient 1 input image of the breast presented in frontal view. The red dashed box
indicates the tumor region, while the white dashed box indicates a nearby healthy region. The white circle marks the nipple. b) Patient 1 input image
of the breast presented in cross-sectional view. c,d) Corresponding 3D FDUNet output images of (a) and (b), respectively. e) Patient 2 input image of
the breast presented in frontal view. f) Patient 2 input image of the breast presented in cross-sectional view. g,h) Corresponding 3D FDUNet output
images of (e) and (f), respectively. i) Input vessel density quantification results from two patients. j) Output vessel density quantification results from
two patients. Scale bar: 10 mm. x, y, and z denote the lateral, elevation, and axial directions of the transducer array, respectively.

absorption contaminated the vascular structures in the red-
dashed box in Figure 7a, making it difficult to visualize the tumor
features. In contrast, the region framed by the red-dashed box
in Figure 7c indicated that our algorithm clearly revealed vessels
from deep regions. Hypervascularity can now be clearly observed
in the tumor regions. We then quantified the vessel density of
the malignant region (red-dashed box) and a normal breast re-
gion (white-dashed box) as the vessel density has been reported
to correlate with breast malignancy.[55] Similarly, we employed
the same methodology to assess the vessel density in another pa-
tient with the same tumor subtype (Luminal A). According to
the clinical report, the cancer lesion is located at 2 o′clock and
12 cm from the nipple. The input and output images can be seen
in Figure 7e–h, respectively. Enhancement in vessel contrast can
also be clearly observed in this case. The vessel density quantifi-
cation results from input and output images are summarized in
Figure 7i,j, respectively. The healthy region (white box) was se-
lected close to the tumor region. The resulting images exhibit
significantly enhanced contrasts in vessel density between the tu-
mor region and the healthy region.

To verify whether the algorithm assists in quantifying the
whole-breast vessel density, we selected four patients with dif-

ferent breast cup sizes and tumor subtypes. Detailed informa-
tion of these patients can be found in Table S2 (Supporting Infor-
mation). Although the local vascular features may differ among
different tumor subtypes, it is anticipated that the breast af-
fected by the tumor will exhibit a higher vessel density compared
to the contralateral healthy breast, owing to tumor-associated
angiogenesis.[56] The vessel density quantification results can be
found in Figure S6 (Supporting Information). The quantified ves-
sel density is the global vessel density from the whole breast.
Upon analyzing the output images, we observed a notable con-
trast in vessel density between the tumor-bearing breast and the
contralateral healthy breast. This result indicates that the 3D FD
Unet can be used to improve photoacoustic breast cancer screen-
ing and diagnosis.

4. Discussion

In this study, we designed a 3D simulation method to generate
the numerical photoacoustic raw data and applied a 3D neural
network to enhance the volumetric image quality on linear ar-
ray based PAT. The training network was developed based on the
fully dense U-net,[30] which has been widely used in biomedical

Adv. Sci. 2023, 2301277 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301277 (10 of 12)
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imaging applications with great performance.[27,29,57] Compared
to traditional 2D neural network approaches, 3D-trained net-
works can better reveal the vascular structure in all 3D planes
by exploring the data’s volumetric information rather than cross-
sectional images. Compared with the conventional 3D U-net net-
work, the 3D FD U-net leveraged the benefit of dense connec-
tivity in each layer, allowing it to learn additional features and
improve the model performance. A detailed comparison of differ-
ent reconstructed approaches (2D stack, Deep-E, 3D U-net, and
3DFD U-net) can be found in Figures S7 and S8 (Supporting In-
formation). Moreover, we overcame the memory allocation and
efficiency problems in 3D network training by utilizing mixed
precision training, which allowed for a larger batch size of eight
(data matrix size is 128× 128× 128) and avoided training crashes.
The addition of dense connectivity aids with better propagation
of information through the network. It makes the architecture
more robust to vanishing gradients,[29] allowing us to train a sin-
gle, compact, and end-to-end model reliably converging even at
full resolution. Therefore, we did not need to utilize other com-
plex 3D training techniques, such as progressive growing, where
the model must be trained iteratively from lower to higher reso-
lutions with multiple subnetworks for each resolution, and each
subnetwork needs to have its own hyperparameters like batch
size, as implemented in.[18]

To validate the performance of the 3DFD U-net network, we
tested the trained model on the simulated volumetric vascular
matrix, printed line phantoms, and in vivo hand, palm, foot, and
breast data. The numerical data demonstrates that our technique
can significantly improve image quality with an average SSIM of
0.85 (versus 0.17 in input) and an average PSNR of 20.48 (ver-
sus 15.18 in input). We also used printed line phantoms to verify
the recovery object size along elevational and lateral directions.
The FWHM quantification proved that the trained 3DFD U-net
model improved the resolution of the image, up to the best na-
tive resolution of the transducer (0.5 mm for lateral and 0.6 mm
for the elevational). In addition to resolution improvement, the
background noise was eliminated. After phantom validation, we
could finally apply the trained 3DFD U-net to human clinical
data, where we were able to generate clear 3D vascular images
of the palm, breasts, and feet of humans. The in vivo data indi-
cates that the 3DFD U-net improves vessel contrast and continu-
ity. More importantly, the limited-view problem of the linear array
was resolved, allowing vessels perpendicular to the transducer
to be visible. This is because our technique learned the vascular
structure in the 3D domain and explored the connection among
different imaging planes to restore the missing features. These
enhanced vascular images allow us to demonstrate the versatil-
ity of 3DFD U-net in a range of human imaging applications.
These include achieving greater entropy for biometric identifica-
tion through finger vein patterns, ensuring more reliable quan-
tification of leaky vessels in the context of foot ulcers, and sim-
plifying the detection of hypervasculature in breast cancer cases.
Such compelling outcomes suggest that our algorithm is well-
suited for clinical photoacoustic imaging. It should be noted that
while the current study utilized a 1064 nm wavelength, the tech-
nique can be applied to PA systems with other wavelengths, as
our K-wave simulation algorithm utilized general light absorp-
tion by hemoglobin without relying on absorption coefficients
specific to a particular wavelength. The prospect of multiwave-

length imaging might offer new possibilities in multicontrast en-
hancement for better tissue assessment and disease diagnosis.

Compared to existing 3D neural network studies in photoa-
coustic imaging, our work utilized fully sampled linear array data,
while others utilized sparsely sampled data from cylindrical[23] or
hemispherical arrays,[18] which have a smaller data size. In ad-
dition, due to the limited-view problem, it is more challenging
to acquire in vivo ground truth images in linear arrays. We ad-
dressed these issues through a precise simulation algorithm that
mimics the experimental situation. Combined with the more ef-
ficient training approach, we were able to utilize the largest 3D
dataset (3000 matrices with dimensions of 128 × 128 × 128) in
photoacoustic imaging neural network training. We envision that
our proposed algorithm will be a valuable tool for photoacoustic
research and clinical imaging.

5. Conclusion

In this study, a 3DFD U-net was introduced to enhance volumet-
ric vascular imaging performance in linear array based photoa-
coustic tomography. To train this network, we developed an ac-
curate simulation model with real experimental noise to mimic
volumetric vascular images acquired by linear transducer ar-
rays. The optimized data loading/streaming method and mixed
precision training enhanced the performance and efficiency of
the neural network. The trained model was successfully vali-
dated through phantoms and various in vivo images. The results
demonstrated that our algorithm improves spatial resolution, re-
duces image noise, refines vessel continuity, and reveals deeper
and limited-viewed vessels. Overall, we proposed a novel deep
learning approach to enhance photoacoustic images beyond the
capabilities of traditional 2D methods, and we have successfully
applied this method to a range of human imaging applications.
As PAT-based vascular imaging is a relatively new field under-
going active exploration in clinical applications,[58,59] we envision
that our proposed algorithm would further advance the field and
improve disease screening, diagnosis and treatment monitoring.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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