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Nowadays, more and more companies migrate business from 

their own servers to the cloud. With the influx of computational 

requests, datacenters consume tremendous energy every day, 

attracting great attention in the energy efficiency dilemma. 

In this paper, we investigate the energy-aware resource 
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management problem in cloud datacenters, where green 

energy with unpredictable capacity is considered. Via propos-

ing a robust blockchain-based decentralized resource manage-

ment framework, we save the energy consumed by the request 

scheduler. Moreover, we propose a reinforcement learning 

method embedded in a smart contract to further minimize the 

energy cost. Because the reinforcement learning method is 

informed from the historical knowledge, it relies on no request 

arrival and energy supply. Experimental results on Google 

cluster traces and real-world electricity price show that our 

approach is able to reduce the datacenters’ cost significantly 

compared with other benchmark algorithms.

loud computing is permeating 
more and more into aspects of our 
life. Besides traditional Web ser-
vices such as Web mail, searching, 
and online education, billions of 
devices in the Internet of Things 

(IoT) also upload their data to the cloud. The data 
volume is undergoing extremely rapid growth. Com-
panies, organizations, personal developers, and 
even individuals could make use of cloud comput-
ing with the realization of platform as a service and 
infrastructure as a service. Big companies, such as 
Google, Amazon, and Microsoft, deploy their data-
centers (DCs) not only for supporting company 
business but also as a kind of purchasable service. 
However, running those enormous DCs consumes 
tremendous amounts of energy, which compounds 
the energy crisis and brings severe economical bur-
den. A report1 from the US Department of Energy 
National Laboratory shows that the DCs in the US 
consumed nearly 1.8 percent of the total US elec-
tricity consumption, which achieves 70 billion kWh.

There are two main granularity levels that 
researchers focus on to reduce the energy cost in 
DCs: server level and DC level. On the server level, 
Gu et al.2 proposed a dynamic voltage frequency-
scaling (DVFS)–based operational expenditure 
minimization method. This work considered the 
minimization problem as mixed integer nonlinear 

programming (MINLP) and solved the MINLP 
issue by an iterative searching algorithm. On the 
DC level, Zhang et al.3 proposed a network archi-
tecture for DCs called Exchanged Cube-Connected 
Cycles (ExCCC) to achieve a lower cost and higher 
network throughput. Recently, Chen et al.4 devel-
oped a framework to evaluate the DCs’ cost compre-
hensively. Considering green energy, the framework 
underpins their energy and maintenance cost joint 
optimization. However, how to reduce the energy 
cost of DCs is still an open issue.

In this paper, we study an intelligent energy-
aware resource management problem in cloud 
DCs. Specifically, we consider a series of requests, 
each of which requires an amount of computa-
tional resources to run its virtual machines (VMs). 
These requests and corresponding VMs are accom-
modated by several cloud DCs connected to both 
power grid and fluctuating green energy gener-
ated by wind, solar, and tide. By their very nature, 
cloud computing service providers prefer to run 
VMs on the DCs that could use more green energy. 
Google builds DCs near green energy providers 
and buys green energy other than grid power at a 
cheap price.5 Nevertheless, migrating requests and 
VMs to those DCs might be a high cost when the 
migration process suffers network congestion. Our 
aim is to minimize the total energy cost using both 
grid power and green energy without any further 
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knowledge about future green energy generation. 
To address this issue, we first propose a resource 
management framework based on blockchain, a 
kind of distributed data structure that records all 
the activities in transactions. Different from other 
frameworks, with the help of blockchain, our pro-
posal does not require any scheduler, bringing extra 
energy cost and decreasing the robustness of DCs. 
Then, a reinforcement learning (RL)–based request 
migration method in a smart contract is discussed. A 
smart contract is a script stored and running on our 
blockchain-based framework and triggered by trans-
actions in our proposed framework. The RL method, 
which learns from historical knowledge generated 
from interacting with DCs, does not need any prior 
knowledge. To this end, the main contributions of 
the paper are summarized as follows:

 1. We consider the request scheduling cost in the 
energy cost minimization problem of the DCs. 
Our objective is to minimize the total cost of 
energy consumption from request scheduling 
and request migration among DCs.

 2. We propose a blockchain-based decentralized 
resource management framework to save the 
energy cost by scheduler that exists in most tra-
ditional models. The malfunctioning of one DC 
will not affect the continued resource manage-
ment, which brings superior robustness to the 
framework.

 3. To minimize the total cost of request migration 
among DCs, we implement RL-based request 
migration method by a smart contract in our 

framework. It is the first attempt for RL to be 
embedded into the smart contract for solving 
the energy cost minimization problem.

 4. We conduct simulations to evaluate the perfor-
mance of our proposed algorithm using real-
world data traces of renewable power, grid price, 
and workload. The numerical results show that 
our proposal has better performance than other 
benchmark approaches.

System Model and Problem Formulation
As shown in Figure 1, we consider the model that 
includes cloud DCs, users and their requests, green 
energy, and grid. DCs distributed in different areas 
are denoted by a set { }=C c c cm, , ,1 2 � . Different 
from typical architectures,4 users could submit 
their requests to different DCs. In our proposed 
blockchain-based framework, these requests can 
be scheduled by DCs themselves, which removes 
the dependency on a scheduler in cloud DCs. 
Particularly, we consider a set of users’ requests 
{ }=R r r rn, , ,0 1 � , each of which asks for more or 

less computational resources to run VM. Because 
our proposed framework is decentralized, requests 
are privileged to be submitted to each DC. In  
Figure 1, we illustrate the possible requests submis-
sions with dashed paths. Additionally, our model 
considers a discrete time series, which is expressed 
as { }=T t t tn, , ,0 1 � . The data processing rate of 
requests rk is denoted by ∈d j nk

j( [1, ]) that would 
fluctuate over time t j. When a large amount of data 
arrives, the increased computational resource use 
will consume more energy.

c2

c4

c3

c1

Users

J={j1,j2,…,jn}

FIGURE 1. System model.
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On the basis of the denotation previously men-
tioned, the energy consumption of DC ci in time slot 
−t tj j,1  is given as

∑ ( )= Θ
∈

U di
j

r R

i j
k

k i
j

,  (1)

where ( )Θ di k
j  denotes the energy consumed by VM 

running on DC ci when it processes data at the rate 
dk

j. The Θ ⋅i( ) mostly depends on the hardware of DC 
ci. The requests accommodated by DC ci in time slot 
−t tj j,1  are defined by Ri

j in Li et al.5 We denote the 
green energy generated by DC ci in time slot −t tj j,1  with 
gi

j
. It is assumed that the DCs use green energy with 

higher priority such as Google,5 and the insufficient 
parts are powered by the traditional grid. The green 
energy and grid electricity price are denoted with pG

i
j

   
and pU

i
j

  , respectively, pU
i
j

   is usually given by regional 
transmission organization, and pG

i
j

   is set to 0 for those 
DCs that have built-in wind and solar farms. Hence, 
the total energy cost in time slot −t tj j,1  is given as

∑ ( )= × − + ×
∈

P p u g p gE
j

c C

U
i
j

i
j

i
j G

i
j

i
j

i

[ max ,0 ]. 
 

    (2)

The management needs to migrate requests and 
its VMs among DCs and to redirect the dataflow by 
updating the routing rules at gateways. Let A r jk( , ) 
denote the DC accommodating request rk in time 
slot −t tj j,1 , and we express the migration cost as

∑ ( )= −
∈ ∈

C q A r j A r jM
j

r R i m
k
j

k k

k i
j

( , , ( , 1)),
, [0, ]

  (3)

where q i ik
j( , )'  is the cost of migrating requests rk 

from ci to ci'  in time slot −t tj j,1 , depending on band-
width costs and the extended time penalty.

Finally, the total cost over the whole time slots 
on energy consumption and request migration can 
be calculated by

∑= +
∈

E P C
t T

E
j

M
j

j

( ).   (4)

Additionally, we define the panoramic view of 
requests among DCs at time t j as

=V R R Rj
j j

m
j{ , , , }.1 2 �   (5)

Our proposed framework aims to manage users’ 
requests among cloud DCs to lower the total energy 
cost. Hence, we are going to minimize the total cost 
E by planning the view V and executing migration 
at the beginning of each time slot. These two opera-
tions are performed without the knowledge of future 
incoming green energy gi

j
 and request migration cost 

function q i ik
j( , )' .

Blockchain-Based Resource Management
In this section, we are going to discuss how the 
blockchain is used in managing the requests and 
VMs among cloud DCs.

Preliminary
Blockchain is a linked data structure that is kept by 
every participant of a blockchain network. It was pro-
posed by S. Nakamoto to solve the consensus prob-
lem of the Bitcoin network.6 As shown in Figure 2, 

Connection

Block
broadcast

VerifyVerify

Verify

Verify Verify

Transaction
broadcast

Block

Transaction

Node 4Node 2

Node 3Node 1

Node 0

FIGURE 2. The blockchain structure.
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blockchain is organized as a single list, where every 
block contains the hash of the previous block except 
the first block (genesis block). The former block is 
always generated earlier than the latter, and every 
block carries some transactions, which are records 
of blockchain activities, i.e., assets transferring. We 
further detail the blockchain generation mechanism 
in Figure 3. The figure depicts that

 1. A user uses his private key to sign a transaction 
while interacting with Node0. Hence, the trans-
action could be traced via the user’s public key, 
and the digital signature also strengthens secu-
rity and data integrity. Then, the transaction is 
broadcast to one-hop neighbor of Node0 (i.e., 
Node1 and Node2).

 2. The neighboring nodes (i.e., Node1 and Node2) 
verify the broadcast transaction obeying the 
transaction protocol and broadcast it to neigh-
bors (Node3 and Node4), or the transaction will 
be dropped.

Note that the transaction protocol is determined 
at the time when the blockchain is being designed, 
each network should make it clear to every partici-
pant. The main motivation of transaction protocol is 
preventing chaos in the blockchain network.

By repeating the procedures mentioned pre-
viously, this transaction finally spreads across 
the whole blockchain network. All transactions 
generated by the network during an agreed time 
interval by all participants are packaged into 
one block by a mining node (miner; see Node3 in  
Figure 3), then

 1. The miner (i.e., Node3) broadcasts the block to 
blockchain network. Like the transaction, block 
is also broadcast peer to peer. Hence, Node2 
receives the block.

 2. The receiver (i.e., Node2) verifies
  a.  all the transactions contained by the block 

obey the transaction protocol; and
  b.  the block has a correct hash of the previous 

block on the blockchain.

If the block passes the verification, the receiver 
adds it to the blockchain and extracts the transac-
tions that the block contains to update the receiv-
er’s transactions, which are also called “view of the 
world.”6 Otherwise, the block is discarded.

Note that the choice of miner is leveraged by the 
consensus mechanism of the blockchain network. In 
Bitcoin, the node first finding the random value is enti-
tled to propose the next block of the blockchain.6 This 
value should be able to generate a number less than 
a given threshold after performing double SHA-256 
hash operations to the concatenation of the previous 
block content and the value.6 The finding process, also 
called mining, is a kind of consensus mechanism.

Because the blockchain is kept by every partici-
pant of the blockchain network and a network would 
end up with any divergence among participants, the 
consensus mechanism is extremely important. The 
blockchain that anyone can participate in (pub-
lic network) generally uses proof of work (PoW) or 
proof of stake (PoS)6 as its consensus mechanism. 
In the meantime, there are various consensus mech-
anisms, e.g., practical Byzantine fault tolerance and 
Tangaroa, for the network that only open to white 
list members (private network).6

Blockchain-Based Resource Management 
Framework
The core mechanisms of our proposed framework 
are transaction, mining, and a smart contract. 
Transaction is used to execute migration, mining 
brings superior robustness, and a smart contract 
supports various user-designed algorithms.

Transaction

Transaction

Transaction Transaction

Transaction

Transaction Transaction

Transaction

HashHashHash

Blockn Blockn+1 Blockn+2

Transaction

FIGURE 3. A blockchain network.
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Transaction. Within the cloud DCs context, the 
transaction serves request migration by recording 
the resource allocation of request VMs. To illustrate 
the mechanism of applying transaction in request 
migration, we introduce our proposed DC-adapted 
transaction protocol. The content of this protocol 
includes the request ID, the request migration source 
and destination, and resource allocation, which are 
presented in Table 1. As shown in the table, a trans-
action whose ID is 1 represents that Alice submits a 
request that asks for α CPU core, β GB RAM, γ GB 
disk storage, δMbps I/O, and ò GPU cards. Note 
that the number of required resources is negative, 
which represents that the request requires resources. 
The transaction whose ID is 2 shows that Node0 
migrates a VM created by Alice to Node1. Specially, 
we use a transaction, whose source is nodename 
and destination is update, to update the available 
resource of the node. The typical situation to use 
this transaction is introducing a new node, e.g., 
transaction whose ID is 0 that introduces Node0 in 
Table 1 to the DCs network. When a nodename is in 
the destination row, it should add the resource listed 
in the transaction and vice versa.

Assuming that Node0 has no resource at the 
beginning and transactions in Table 1 happen 
according to the order, the CPU resource left can be 
calculated as ( ) ( ) ( )− − + − − − =a a0 32 32 . We now 
go over how Node0 migrates the request to Node1 by 
transaction, i.e., what happens to these two nodes 
in the migration process. For the first step, Node0 
creates the transaction, declares the resource that 
the request needs, gives the transaction an ID, and 
sets Node1 as destination. If we consider the block-
chain network as a database, Node0 is creating a 
record that shows Node0 has no resource allocated 
(the request is migrating to Node1) and deleting the 
old record, where a part of the resource is allocated 
to the request. On the Node1 side, the inverse opera-
tions are being performed. The creation and dele-
tion are to modify the record of resource. (Records 
are privileged to be deleted and created but not 
directly modified, which is done to prevent conflicts 

among nodes.6) For the second step, the transaction 
is broadcast and verified by nodes in the network. 
The verification confirms that

 1. the transaction does not address the record that 
has been deleted, because the resource should 
not be allocated by both sides; and

 2. the amount of resource to be allocated is correct. 
For example, if a transaction transfers 16 CPU 
cores from Node0 to Node1, but there are 8 cores 
left in Node0, the upcoming transfer would fail.

Mining. Our proposed framework allows every DC to 
perform mining. Because all the participants of the 
framework are DCs, the framework does not require 
mechanisms, such as PoW and PoS, resulting in tre-
mendous energy expenditure. In the proposal, the 
DCs mine the next block as follows:

 1. Sort the list of DCs by load in decreasing order;
 2. Eliminate DCs that used to mine the previous l 

blocks in the list; and
 3. The first DC in the list mines the next block.

The other DCs will not attempt to mine a block 
to save the energy consumption. In the procedures 
previously mentioned, l is the parameter used to 
control mining process. The larger l is, the higher 
possibility the heavy-load DC will be chosen to mine. 
We assume each DC has a probability τ  of malfunc-
tion, the failure probability of mining is given by

τ λ( )= − ≤P P Bin mf ( ,1 ),   (6)

where m is the number of DCs and ⋅Bin( ) repre-
sents the binomial distribution. If =m 20, τ = 2.5%,  
the setting l=14 keeps Pf  below 0.001 percent, which 
brings superior robustness to the DCs.

Smart Contract. A smart contract is a script stored 
in our blockchain-based framework, which is trig-
gered by transactions sent to it. The DCs migrate 

TABLE 1. Datacenter-adapted transactions.

ID Source Destination Resource
CPU

RAM Disk I/O GPU

0 Node0 Update 232 2128 2216 25 28

1 Alice Node0 2a 2b 2g 2d 2e

2 Node0 Node1 2a 2b 2g 2d 2e

3 Finish Node1 a b g d e
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requests and VMs by executing the smart con-
tract. Consider a simple DCs network that has par-
ticipants DC DC DCl{ , , , }1 2 � . The network always 
migrates requests and VMs to the DC that has the 
lowest load. The smart contracts stored in each DC 
can be designed as Algorithm 1.

Algorithm 1 indicates the logic of the smart con-
tract, and it needs no centralized controller. When a 
block is accepted by a DC, the smart contract run-
ning on this DC checks every transaction it con-
tains. When the smart contract find a transaction 
representing request migration to the DC where it 
runs, it migrates the migrated requests to the DC 
that has the lowest load, except itself running on the 
DC with the lowest load.

Case Study: RL-Based Energy Cost 
Minimization
In this section, we investigate the RL-based energy 
cost minimization. The RL-based method is pre-
sented first, and the experimental results show the 
performance of our method.

RL Mechanism
RL is an approach learning what to do in different 
situations to maximize profit. The key elements of 
RL are state, action, reward, and agent. The learn-
ing process of an agent includes a series of actions 
and the corresponding reward. In each state, agent 
evaluates the expected profit of various possible 
actions by value function (i.e., value function is a 
function mapping state and action to reward). Then, 
the agent, according to a certain policy, selects an 
action to take, and the state thereafter is changed. 
The reward associated with the former state and the 
taken action is used to update the value function. 
Generally, the profit, also called return, is the accu-
mulated reward that measures the benefit of a taken 
action in a certain state. The RL is an ideal solu-
tion to reduce the energy cost among complex DCs, 
because it does not need any prior knowledge.

In our proposal, the idea is to migrate requests 
and VMs among DCs according to the historical 
migrating decisions’ energy cost. We implement 
the idea by a smart contract, which is triggered 
by every incoming request. In other words, once a 
request submission or resource allocation happens, 
our cost minimization algorithm implemented by a 
smart contract will be triggered. In each learning 
iteration led by a request, DCs first select an action 
(migrates requests and their VMs to DCs). Then, 
the migration is performed. Finally, the new state 
and reward (DCs’ load and energy cost) is obtained 
for learning. Specifically, actions contain all the 

possible migrations of requests and VMs among 
DCs, and states are the load situations that the 
DCs could achieve. At the start of each time slot, 
the next mining DC obtains the panoramic view of 
requests = =V R R Rj

j j
m
js { , , , }j 1 2 �  and determines 

the location of requests and VMs after migration 
= =+ +

+ + +V R R Rj j
j j

m
js { , , , }1 1 1

1
2

1 1� . Then, DCs per-
form migration a j by comparing Vj with +V 1j . After 
that, the reward rj could be evaluated by Equation 4. 
This process can be expressed as

+ → + +a r sj j js ,j 1   (7)

which means action a j is taken at state sj and the 
state changes to +sj 1 with reward rj. We model the 
migrations as a Markov decision process (MDP):

+ → + + → → + +a r s a r sn ns .0 0 0 1 1 1�   (8)

Based on this MDP model, we formulate the 
value function Q s aj j( , ) as

�

�

γ γ γ

γ γ γ
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=

=

+ + +
− −

+ + +

+ + +

+ + + +

+ + + +

+

( )
( )

( )



















− −

Q s a E r r r r

E r r r r

E r Q s a

,

, ,

j j j j j
n j

n

j j j
n j

n

j j j

1 2
2

3
1

1 2 3
2

1 1 1

 
  
 (9)

where γ ∈ (0,1] is a discount factor that makes the 
nearer reward more important. Based on Equation 9, 
the value function could perform incremental learn-
ing (Q-learning7) by

, 1 ,

[ min , ],

1 1 1 1

1
 

µ

µ γ

( ) ( )
( )

( )= −

+ +

+ + + +

+

Q s a Q s a

r Q s a

j j j j

j j j
  (10)

where µ represents the learning rate.
We present our RL-based migration method in 

Algorithm 2. We use the policy called πϕ, which 
chooses a random action with a probability of ϕ, or 
use policy π to choose an action. The policy π  is a 
greedy strategy given as

π( )=s arg Q s a
a

 min ( , ),   (11)

which means choosing the action that has the lowest 
value at state s. Because every DC could take part 
in the requests and VMs migration, the smart con-
tract running Algorithm 2 should be distributed to 
every DC. To reduce the energy cost, as presented in 
line 9, Algorithm 2, the DC that performs learning, 
i.e., the agent, will broadcast the current learned 
parameters so that other DCs do not need to learn 
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them repeatedly. This broadcast operation is similar 
to those transactions listed in Table 1. The param-
eters to be broadcast are treated as some resources 
recorded by transactions.

Simulation Results
In our experiments, we use the request trace from 
1-mo Google cluster workload traces collected in May 
2011.8 The traces contain information such as request 
arrival time and CPU usage of each request, and we 
randomly generate the lacked information about GPU 
usage. The average request arrival rate is about 200 
requests per minute. This experiment is conducted in 
three DCs, which are Prewitt in New Mexico, Phoe-
nix in Arizona (AZ), and Los Angeles in California  
(CA), and renewable energy is estimated accord-
ing to the weather conditions published by National 
Renewable Energy Laboratory. The electricity price 
is provided by Energy Information Administration. 
The learning rate of our algorithm is set to 0.8.7 We 
normalize the cost to the result of Round-robin (RR), 
where DCs take turns to accommodate requests.

Figure 4 shows the influences of parameters l 
and g to the whole energy cost. As illustrated in the 
figure, under different values of g, a larger l makes 
energy cost higher. On the contrary, the larger g 
helps to reduce the energy cost. On average, the cost 
is saved about 60 percent more than RR.

The comparison among RR, MinBrown (MB), 
and our method is depicted in Figure 5. Our 

RL-based energy cost minimization method consid-
ers jointly green and migration energy; it is obvious 
that the proposal could save 50 percent more energy 
cost than RR, which is about 20 percent more 
than MB. Because MB just considers maximizing 
the green energy usage but not migration cost, the 
energy cost saving is limited.

Related Works
Green DCs
Cloud DCs consume tremendous energy;4,9 thus, 
green DCs are in urgent demand. Gu et al.2  
proposed a DVFS-based operational expenditure 
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minimization method and developed the corre-
sponding resolution search algorithm. Zhang et al.3 
proposed ExCCC, a new type of interconnection 
network that can be employed by DCs, providing 
low energy consumption and high scalability with 
the help of its network architecture. Chen et al.4 
introduced a comprehensive framework to evaluate 
server power, cooling, hardware maintenance cost. 
Based on this framework, they performed server 
and inlet cooling water joint cost optimization and 
gained a considerable cost saving. Recently, some 
works have introduced RL into the DC field. Zhou 
et al.7 proposed a single-agent VM selection method. 
Zhu et al.10 combined game theory and RL to assign 
resources to users more fairly.

Our work for the first time takes the cost of a 
request scheduler into account. We remove the 
scheduler in our proposed framework so that DCs 
could interact peer-to-peer. In this case, the availabil-
ity of scheduler does not affect the whole network.

Blockchain and Smart Contract
Blockchain recently has attracted the interest of 
researchers in various fields, including finance, 
e-health, and distributed systems. A comprehensive 
survey about blockchain was given by K. Christidis 
and M. Devetsikiotis.6

Saito and Yamada et al.11 used a probabilistic 
state machine to model blockchain and gave it an 
enhanced formal representation. The authors proved 
that the consensus cannot be reached under the  
circumstance in which the number of blockchain 
participants is uncertain.

Kishigami et al.12 proposed a blockchain-based 
digital content distribution system. The proposal 
can easily support the content owner’s rights control 
operation, and the security is also guaranteed.

Ethereum13 is a blockchain-based decentralized 
application platform supporting a Turing-complete 
smart contract, which was first proposed by Szabo 
in 19946 and, in fact, is a program stored in block-
chain. Yuan and Wang14 proposed a blockchain 
based intelligent transportation system (ITS) frame-
work, which is an elegant solution to the security 
problem and performance limitation in ITS. The 
main algorithms are implemented in smart contract 
layer. Huh et al.15 discussed the synchronization 
issue in IoT with the current server-client model and 
proposed a seven-layer blockchain platform–based 
IoT device management system. The platform was 
built on Ethereum with a smart contract.

This research highlights the importance of a 
smart contract in the blockchain network. Inspired 
by such a concept, our proposal further investigates 

the application of a smart contract and combines RL 
with a smart contract to perform cost minimization 
among cloud DCs.

Conclusion
With significant improvements in cloud computing 
technologies and applications in IoT, we have wit-
nessed an explosion of data. Massive amounts of 
data are generated in DCs, which not only evoke 
various promising data-driven services but also con-
sume tremendous energy every day. In this paper, we 
are concerned with the cost minimization issues in 
cloud DCs and study how to reduce the total cost 
of energy consumption from the traditional power 
grid, request scheduling cost, and request migration 
in DCs. To this end, we develop a blockchain-based 
decentralized resource management framework, 
where requests can be scheduled by DCs themselves 
without depending on the scheduler in cloud DCs. 
Furthermore, we propose the RL-based request 
migration method with an embedded smart contract 
in our framework for cost saving. Finally, simula-
tions are operated based on Google cluster traces 
and the real-world electricity price, demonstrating 
the superior performance in energy cost saving com-
pared with other benchmark algorithms in DCs. 
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