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ABSTRACT
Finger gesture recognition is gaining great research interest for
wearable device interactions such as smartwatches and AR/VR
headsets. In this paper, we propose a hands-free fine-grained fin-
ger gesture recognition system AO-Finger based on acoustic-optic
sensor fusing. Specifically, we design a wristband with a modified
stethoscope microphone and two high-speed optic motion sensors
to capture signals generated from finger movements. We propose a
set of natural, inconspicuous and effortless micro finger gestures
that can be reliably detected from the complementary signals from
both sensors. We design a multi-modal CNN-Transformer model for
fast gesture recognition (flick/pinch/tap), and a finger swipe contact
detection model to enable fine-grained swipe gesture tracking. We
built a prototype which achieves an overall accuracy of 94.83% in
detecting fast gestures and enables fine-grained continuous swipe
gestures tracking. AO-Finger is practical for use as a wearable de-
vice and ready to be integrated into existing wrist-worn devices
such as smartwatches.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile de-
vices; Virtual reality; Gestural input; Interaction devices.
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1 INTRODUCTION
Recent years have witnessed the explosion of Extended Reality
(i.e., AR, VR, and MR) applications that can dramatically improve
productivity and user experiences in many scenarios (e.g., remote
collaboration [33], design [35], entertainment [27], etc.). The XR
market size is projected to grow by 300% and reach $98 billion by
2025 [18]. While the interactable space is extended freely to the
reachable range, the XR interaction is still limited and requires
a large effort from users. Users need to lift their hands to reach
either a small 2D on-device touch surface [10] or a limited Line-
of-Sight space covered by the Field-of-View of the head-mount
tracking cameras [31]. VR headsets [22] usually come with hand-
held controllers for interactionwhich are not hands-free and require
the users to press buttons without seeing them.

To provide natural and low-effort XR interactions, studies pro-
posed wrist-worn solutions, which can follow hands continuously
without hand grasping, to capture gesture interactions. With the
advances in sensing technologies, many gesture-related modalities
were proposed, which can be categorized into two types. The type
I solutions are to infer finger gestures by directly sensing part of
the hand from wrist (e.g., palm [38] and back of hands [36, 39]).
The modalities (e.g., cameras and IR sensors) used in this type of
solution recognize gestures by directly sensing a fraction of hand
within the field of view (FoV). However, the most expressive part of
the hands –finger tips– are usually not visible to such wrist-worn
sensors. To achieve larger FoV, such sensors need to be lifted off
the wrist which are uncomfortable to wear [36, 39] or multiple
cameras are required which incurs heavy computation overhead
and large latency [13]. The type II solutions infer finger gestures by
capturing gesture-induced physiological signal on wrist, including
skin deformation [29], ultrasound image [21], muscle electrical ac-
tivities [16], vibrations [37], etc. The modalities in type II solutions
capture indirect signals from finger gestures which make the recog-
nition task more challenging. Although such sensors do not have
line-of-sight requirement, they are usually prone to disturbances
due to the low Signal to Noise ratio. Type II solutions are usually
limited to discrete gestures with no fine-grained gesture tracking.

In this paper, we take an exploratory step and unveil the oppor-
tunity of consolidating the two types of modalities for a unified
hands-free fine-grained gesture sensing system. The wrist anatomy
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reveals that finger gestures are controlled by the coordination of
hand muscles and tendons going through wrists [21], thus finger
gestures create both visual signals that can be observed by optic
sensor and internal signals that can be sensed from the wrist. Given
this observation, we propose a novel fine-grained gesture recogni-
tion system AO-Finger , which is built upon high-speed low-power
optic motion sensors (i.e., type I modality) and modified stetho-
scope microphone (i.e., type II modality). Our optic sensor has a low
profile and only observes a small thumb area (as shown in Figure 2)
such that it can be built into a wristband in a compact design. The
modified stethoscope microphone is sensitive to sound signals con-
ducted from finger tips through tendons. By taking advantages of
the complementary strength of both sensing modalities, AO-Finger
enables hands-free, fine-grained finger gestures detection with a
compact wrist-worn device. This facilitates multiple important ad-
vantages for gesture recognition in XR applications: 1) Hands-free:
AO-Finger is wrist-worn system that releases both hands for other
tasks and interactions in XR applications. 2) Inconspicuousness and
effortless: unlike existing solutions which require to the users to
lift up arms in the air to enable camera tracking or using the touch
pad on HMD, we design a set of inconspicuous, effortless micro
gestures that are easy to perform with minimum finger movements.
3) Fine-granularity: one unique advantage of AO-Finger is that it
enables continuous thumb swipe tracking, which provides more
fine-grained interactions compared to a large set of existing work
which only recognize discrete gestures [14, 21, 28, 29, 37].

To achieve hands-free, fine-grained and effortless finger gesture
recognition with these advantages, we must address several critical
challenges: 1) design a set of gestures that are easy and natural to
perform, and fits to AO-Finger sensing modalities; 2) build a sensing
hardware prototype with strategic sensor mounting to ensure stable
signals (e.g., optimal microphone location and contact, optic field
of views); 3) analyze the complementary sensing data and develop
models and systems that take advantage of their signals organically
by sophisticated sensor fusion algorithms design.

Specifically, we make the following contributions:

• We comprehensively investigate existing sensing modalities
and identify the combination of acoustic-optic sensor fusing
for hands-free, fine-grained finger gesture recognition. To
take full advantage of our sensors, we design a set of incon-
spicuous micro finger gestures that are natural to perform
with minimum efforts.

• We design a low-cost, noise-resilient modified stethoscope
microphone to capture the gesture-induced acoustic signal
within a wide spectrum. We customize two low-energy optic
sensors with robustness to ambient light and fine-tuned
sensing range for privacy-preserving fine-grained gesture
tracking.

• We propose a multi-modal CNN-Transformer model for fast
gesture (flick/pinch/tap) detection which outperforms the
baseline model significantly with an 15% accuracy increase.
We also train a separate finger swipe contact detection model
which enables fine-grained continuous swipe gesture track-
ing.

• We develop a series data augmentation techniques based on
physics simulations which overcome the overfitting problem

and improves overall accuracy significantly by almost 20%.
To further enhance the performance, we propose an aggre-
gation model for robust gesture detection and a system level
readiness detection mechanism to suppress false alarms in
noisy scenarios.

• We build a prototype with 3D printing and evaluate the user
experience in multiple applications including interaction
with AR glasses. Results show AO-Finger is robust in detect-
ing fast gestures with an overall accuracy of 94.83% and has
high usability of fine-grained swipe gesture tracking.

To the best of our knowledge, AO-Finger is the first wrist worn
system for hands-free, fine-grained inconspicuous micro finger
gesture detection based on acoustic-optic sensor fusion. Despite its
advanced capabilities, AO-Finger achieves a compact low-profile
hardware design, which is ready to be integrated into existing wrist
worn devices such as smartwatches or used as a standalone input
device.

2 OVERVIEW
We briefly introduce the finger gesture set we propose, rational
behind our sensing modality selection and the high-level system
overview.

Figure 1: Gesture set and the start/end definition for data
labelling.

2.1 Gesture Set
2.1.1 Gesture Design Consideration. During the gesture set design,
we have two considerations. First, it is essential to design a set
of finger gestures that is easy and natural to remember for most
users. As the touch-screen interaction has been widely adopted
and accepted, the gesture set that supports a smooth transition
from the existing touch-screen interaction method to AO-Finger
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Table 1: Comparison of typical wrist worn sensors for finger gesture recognition.

Sensor Wearability Functionality Limitations

IR sensor (point to wrist skin) [20] High Medium Low sensor density
Camera/IR sensor (point to fingers) [36, 38, 39] High High Power hungry, high latency, require line-of-sight

Pressure sensor [7, 28] Medium Medium/High Require firm contact
Ultrasound [14] Low Medium Require firm contact, coupling gel
EMG sensor [26] Medium High Require good electric contact
Magnetic [5] Low High Additional sensors on fingers

Microphone [12, 43] High Medium Background noise interference

is targeted. Therefore, we avoid involving more than two fingers
in our gesture design and limit the number of gestures. Second,
inconspicuous and fine-grained micro gestures [4] are preferred
so users can use AO-Finger in most environments with minimum
effort. Therefore, we include gestures that users are not required
to finish the whole movement to use, i.e., the user’s progress of
gesture should be mapped to a scale (e.g., slider).

2.1.2 Gestures. With these considerations, we design a set of five
gestures inAO-Finger , i.e., Flick, Pinch, Tap, Swipe_Left, and Swipe_Right,
as shown in Figure 1. Since each gesture is a sequence of finger
movements, we clearly define the start and end state of fingers for
data labelling. These definitions are critical to ensure gestures can
be labelled consistently among all sessions labelled by different
users. We divide the gesture set into two categories: fast gestures
(i.e., flick, pinch and tap) and fine-grained gestures (i.e., swipe left
and swipe right) which require continuous tracking. Fast gestures
involves faster finger movements and create high energy in au-
dio signals, and usually they have shorter duration. Fine-grained
gestures like swipes involve continuous movement and usually
last longer duration. Continuously tracking the precise swiping
finger movements enables fine-grained control in human computer
interactions.

2.2 Why Acoustic-Optic Fusion?
Sensing Modalities. Various sensing modalities have been ex-
plored for finger gesture recognition from the wrist. We evaluate
the possible modalities from three aspects: wearability, functionality
and limitations. Wearability has direct impact on the comfortable-
ness of prolonged wearing and the sensors should have small form
factor that can be easily integrated into space constrained wrist-
band. Functionality shows the capability of the sensors in detecting
finger gestures from the unique signal features. We investigate each
sensing modality and propose sensor fusing design to overcome
the limitations.

Table 1 shows the typical sensors that have been explored for
wrist-worn finger gesture recognition systems. Wrist worn cam-
eras pointing to the fingers [36, 38, 39] reconstruct 3D hand pose
from camera frames of a hand part such as palm and hand back.
While these solutions are straightforward, they usually have high
latency and consume a lot of power on processing large volume
of video data in realtime, making them not suitable as wearable
device. Additionally, regular cameras suffer privacy issues. Others
like pressure [7, 28], ultrasonic [14] and EMG [26] sensors have

lower wearability since they require firm contact against the skin.
Microphones have shown the capability of distinguishing finger
gestures from the sound signals [12, 43]. They have high weara-
bility due to the low profile form factor with limited functionality
due to the poor Signal to Noise Ratio (SNR) and background noise
interference.

Why Sensor Fusion? When finger gestures are performed, the
friction between contact surfaces (e.g., thumb vs. index finger) and
internal bone/tendon movements generate sound signals, which
conducted through the body and can be picked up by microphones
on the wrist. Depending on the type of gestures, the captured
sound signal has varied energy and frequency distributions, which
creates features for gesture recognition. However, some gestures
generate very similar sound signals. For example, tap and pinch
gestures are close to each other since they only differ slightly on
the contact position: thumb contacts index finger center area vs.
tip. Swiping thumb against index finger left and right create similar
sound signals with weak energy which makes it very challenging to
distinguish from purely audio signals. Additionally, sound signals
are known for poor SNR due to noises from outside environment
as well as internal body conduction. In order to complement these
limitations, we seek an additional sensing modality in our design.

We choose optic motion sensors as complementary sensing
modality in AO-Finger for sensing the proposed gesture set. By
strategically placement on the wrist, optic sensor is capable on
tracking thumb movements (e.g., raising up/down and swiping
left/right), which helps resolving the ambiguities between tap vs.
pinch and swipe directions. Flick is so unique in acoustic signal
with high energy, high frequency and sharp duration that it can be
reliably detected from sound signals. Through acoustic-optic sensor
fusion, AO-Finger captures sufficient sensor signals to recognize
our defined gesture set reliably with little ambiguity. Additionally,
leveraging the object tracking capability of optic sensors, AO-Finger
enables fine-grained continuous thumb swipe gesture tracking for
the next level of interactions compared to existing discrete gesture
classification solutions.

2.3 System Overview
Figure 2 shows the overall system design of AO-Finger . It takes two
signals as input for finger gesture recognition: dual optic sensors
that track the continuous movement of the skin area connecting
thumb and wrist (highlighted in Figure 2) and one modified stetho-
scope microphone in contact to the inner wrist. We process and
enhance the signals on the sensing hardware to provide reliable
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Figure 2: System overview ofAO-Finger which contains threemajor components: sensingmodalities, hardware-assist processing
and fine-grained finger gesture recognition algorithms.

signals with high SNR. Specifically, instead of retrieving raw low
resolution images (30x30 pixels) from optic sensors to the Micro
Controller Unit (MCU) for processing, we leverage the on-chip
image processing to enable object tracking and outputs the infor-
mation of the tracked object only (e.g., position, size and brightness).
This enables low power consumption of the system and achieves a
high frame rate of 386 fps which is essential for capturing signals
from fast finger gestures such as flick, pinch and tap. We strategi-
cally placed two optic sensors on the wristband to expand the FoV.
We alsomodify an off-the-shelf MEMSmicrophone to suppress skin-
coupling noise, amplify skin-conducted sound signals and isolate
air-conducted noises. Last, we design a set of algorithms for fine-
grained finger gesture recognition which consists of a multi-modal
CNN-Transformer network for fast gesture recognition, a finger
swipe contact detection model (contact between thumb and index
finger to trigger swipe gestures), and a heuristic aggregation mod-
ule to output final gestures. In total, AO-Finger enables three fast
finger gestures detection and two continuous fine-grained swipe
gestures tracking, which are inconspicuous and effortless to per-
form. AO-Finger maintains a lower profile such that it is ready to be
integrated into existing wrist-worn devices or use as a standalone
input wearable device for AR/VR interactions.

3 APPROACH
3.1 Hardware and Sensor Signals
To capture the designed gesture set, we design our wristband pro-
totype as shown in Figure 3. The sensors carried by the wrist-
band include two strategically positioned optical sensors (modified
PAJ7620U2) for larger FoV and a modified MEMS microphone for
skin-coupling noise reduction and signal amplifying. A Bluetooth
Low Energy (BLE) controller board (Adafruit Feather nRF52840
Express) is attached to capture the data reported by sensors and
communicate with XR devices requiring gesture inputs. The sen-
sors are soldered on soft Printed-Circuits for the flexible placement
on wristband. To secure sensor mount and ensure consistent rela-
tive sensor positions in repeatable wearing, we designed and 3D-
printed a wristband skeleton. The wristband skeleton consists of
three pieces on wrist locations, i.e., the volar-wrist piece (VP), the
dorsal-wrist piece (DP), and the radial-wrist piece (RP) as shown in
Figure 3. The three parts are chained through elastic bands. Wrist
anatomy reveals that the volar wrist area is thinner and closer to
the tendons that controls finger gestures than the other two loca-
tions. Therefore, we place the microphone on the volar-wrist part

of the wristband for a better capture of the gesture-induced acoustic
signal.

Dual Optic Sensors. One of the key challenges to vision based
sensing modalities is the disturbance from ambient lights. To get rid
of the influence of ambient lights, AO-Finger’s optic sensor works
in infrared spectrum and carries its own IR LED. Specifically, for
each sensing frame, the IR LED first illuminates the sensing area
and then dims (5% duty cycle). The illumination area is fine-tuned
and limited to 5-15 cm to keep a low energy consumption. The
sensor array then takes an IR image (30x30 pixels) when the IR
LED is on and off, respectively. Due to the ultra-low resolution and
short depth range, our sensors mitigate privacy issues. Subtraction
is then performed on the two adjacent shots to remove any possible
IR noises from environment and generate a single frame. To detect
the object in the view, we apply a threshold on the frame and select
the pixels brighter than the threshold as valid pixels followed by a
clustering algorithm to find out the largest cluster of bright pixels.
We use the center of the cluster to represent the object location
and convert the center pixel location to X/Y coordinate values.
Note that these image processing procedures execute on highly
optimized integrated circuits in the sensor for extreme efficiency
and high frame rate. In our settings, we achieve a frame rate of 386
fps for capturing fine-grained finger movements. The optic sensor
captures the shroud of thumb finger in the view. We used two optic
sensors with slightly different tilting angles to expand the field of
view. On average, each optic sensor only consumes 2.82 mA current
when operating, including IR LED illumination, imaging, running
image processing, and communication. In contrast, a typical camera
(OV5647 [24]) designed for IoT applications draws 200 mA (10
times of our optical sensors), excluding any image processing and
illumination.

Modified Stethoscope Microphone. One important difference
between the regular microphone and our skin-contact microphone
is the skin-coupling noises due to the capacitance between skin
and microphone shell. To prevent radiated disturbances, the COTS
MEMS microphone is usually encapsulated into a metal shell. How-
ever, given the small form factor of MEMS microphone, the contact
area between the shell and skin will be limited and tend to gener-
ate capacitance. Consequently, the skin-coupling capacitance can
disturb the MEMS microphone (as MEMS Mic leverages the inner
capacitance to measure the sound pressure) and the filtering ca-
pacitors on FPC. The skin-coupling noise frequency band overlaps
that of finger gesture acoustic signals, thereby making it hard to be
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removed by post signal filtering. To mitigate the noise, we specifi-
cally design a z-shape slot on the volar-wrist part for microphone
installation (shown in Figure 3). It can be seen that the capacitors
of microphone can be hide in z-slot and is well isolated from skin
surface. In addition, we apply a thin metallic membrane (aluminium
foil) to expand the microphone contact area with skin to mitigate
the disturbing capacitance. The metal membrane also brings two
important benefits: 1) the metal membrane isolate the air vibration
from the environment and only takes the vibration from contacted
wrist skin which increase the SNR significantly. Therefore, AO-
Finger does not require extra noise-cancellation microphone and
algorithms1. 2) As the opening of microphone shell is covered by
the metallic membrane, the microphone works similar as a stetho-
scope. The acoustic signals from finger gestures is further amplified
by the formed metal drum.

Sensor Data Synchronization. Intuitively, the controller board
can retrieve the sensors’ readings by looping to keep all the sensors
synchronized. However, the gestures that AO-Finger recognizes is
usually fast (less than half a second) and the acoustic and optical
sensing modalities are of different and high sensing rates. In AO-
Finger , the controller board access the two optical sensors via I2C in
a synchronized way as their sample rates are the same (386fps) and
relative low compared with the microphone. As the microphone
sends acoustic signals to the controller board via Pulse-density
modulation (PDM) at 41667 Hz, we enable asynchronous trans-
mission for acoustic signals utilizing direct memory access with
double-buffering. The interruption triggered by buffer full event is
minimized to reduce the influence on the loop duration. In addition,
we make the controller board send the same amount data in each
loop to keep the communication overhead consistent.

Figure 3: AO-Finger’s prototype consists of a modified stetho-
scope microphone and dual optic sensors.

Signal Pre-processing. The contact friction between modified
microphone and skin may create artifact spikes. To mitigate such
artifacts, we first apply a median filter to remove such outliers. After
1We designed dual microphones in hardware with one reserved for background noise
cancellation. We decided not to use the second one due to the excellent noise isolation
capability brought by metal membrane covering.

filtering on the time domain, we compute the spectrogram of the
audio signal to convert it into both frequency and time domain to
capture richer information. We use a time window of 1024 samples
(24.6 milliseconds) with an stride of 80 samples for computing the
Power Spectrogram Density map. Then we take the log on the
signal so that is can be easier to be normalized. We use a min-
max scalar to normalize the spectrogram. Note that the min and
max are estimated from the whole dataset across all the users. It
is critical to make sure not to apply sample level normalization
otherwise we lose amplitude information which is critical for flick
gesture detection. After the audio signal pre-processing, we get a
normalized 2D spectrogram as acoustic input for the model.

Same as the audio signal, we also apply median filter on the optic
data to filter out possible spike artifacts. To accommodate varying
wearing positions, we subtract the raw X/Y values for each gesture
sample window by the mean value. Then we normalize the values
by dividing the values by a fixed range, which is the maximum
possible moving distance range estimated from all the dataset. This
normalization retains the amplitude of the gesture and is agnostic
to the wearing position. We take signals from both optic sensors
[X1, Y1, X2, Y2] as input to our model.

3.2 Gesture Detection Model
It is relatively intuitive to train a single multi-class classifier to clas-
sify the 5 gestures and negative class with both acoustic and optic
signals as input. Such straightforward design faces multiple limita-
tions: 1) a simple classification model only produces a class label
for each performed gesture, which lacks the fine-grained gesture
tracking capability; 2) training a multi-modal neural network on
certain gestures could lead to overfitting to a single modality, thus
the model ignores other sensing modalities. In our experiments,
we find that swipe gestures are mainly controlled by optic signals
rather than acoustic signal. This causes a major problem if not
addressed properly: swiping thumb without touching index finger
also triggers gestures, which creates false positives.

Based on the observations, we decompose our problem into
two models and then we aggregate the results based on heuristics.
Specifically, we train a multi-modal classification model for fast
finger gestures only to detect flick, pinch and tap; and another
finger swipe contact detection model specifically for detecting the
thumb/index finger swipe contact status. If the swipe contact is
confirmed, the system enters continuous swipe gesture tracking
mode which keeps tracking the thumb movements for fine-grained
control.

3.2.1 Fast Gesture Detection. We first present our multi-modal
sensor fusion model for fast gesture detection.

Input representations.We choose the input signals based on the
gesture set analysis. Flick gestures usually have shortest duration
(as shown in Figure 8) and highest pitch (i.e., frequency and energy),
these features can be captured by acoustic signals. Since flick mainly
involves index finger movement, it is hardly visible to the optic
sensor on the wrist. Pinch gestures create lower pitch sound signals
compared to flick due to the “soft” contact of thumb and index finger
tips, which also applies to tap gesture. Pinch and tap share similar
acoustic features since the major difference is the contact position:
tapping requires thumb taps index finger middle part while pinch
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Figure 4: Multi-modal CNN-Transformer model for fast gesture detection and finger contact detection model.

requires the thumb to “tap” index finger tip. It is challenging to
distinguish pinch from tap due to the similar acoustic features.
Thus, we introduce the optic signals. Tap gestures involve thumb
moving which can be captured by optic sensors, while pinch mainly
involve index finger movements, which is less sensitive to optic
sensors. We take signals from both optic sensors and the modified
microphone as input, and propose a multi-modal neural network
for signal classification.

Model Architecture. As our model takes two modalities as input,
we design a dual-branch network, one for acoustic signals and
one for optic signals. Acoustic data is represented as spectrogram
after pre-processing, which inspires us to use 2D CNN as initial
embedding extraction layer. We also 1D CNN on optic data as
embedding extraction layer. While CNNs have been successful
in many computer vision tasks such as image classification [8]
and object detection [3], Transformers, which are initially used
in Nature Language Processing tasks [32] have shown superior
performance in many of these tasks. We use transformer layers
an encoder for high level feature extraction and propose a CNN-
Transformer fusion model to classify signal sequences to gestures
(as shown in Figure 4). After three transformer encoder layers,
we only take the features at last time stamp, which are fed into
fully connected layers to enrich the features. We concatenate both
features from audio and optic, and classify the features with two
fully connected layers. The output are the one-hot encoding for
the three gestures and none class. We use cross-entropy loss for
training the model.

3.2.2 Continuous Gesture Detection. A naive solution for continu-
ous gesture (swipe left and swipe right) detection is to train similar
classifier as fast gesture detection model. However, such model
can only outputs binary results such as left or right, they are not
capable of continuous fine-grained thumb tracking. This is a big
sacrifice in user experience (e.g., continuously swiping tracking can
be used to adjust volume level smoothly).

As our optic sensor produces raw object movement coordinates
in pixels, we can directly leverage such measurements for fine-
grained control. The challenge is that without knowing if the thumb
is contacting the index finger, the signal will be noisy as optic sensor
has no idea whether the thumb is contacting the index finger. Thus,
we need to do the contact detection so that we can filter out the

movements when the thumb is moving in the air. To achieve this
goal, we train another neural network for detecting the contact.

Finger Contact Detection. It is important to decide which sensing
modality we should use for contact detection. In this case, we choose
to use audio signal only without optic signals. When the thumb
is rubbing against index finger, the sound can be captured by the
microphone which gives us opportunity to identify the contact.
There is also information from optic sensor as well such as high
Y value since the thumb is usually farther away from the sensor
when it’s touching the index finger. However, such absolute signal
numbers are highly unreliable when the sensor wearing position
changes. Naively training a model based on both audio and optic
signals can easily overfit the model to optic signals, which turns
out to be highly sensitive to wearing positions when testing in
real-time.

Contact detection based audio signal is not an easy task as well.
In our experiments, we also found that thumb movements in the
air without contacting the index finger also generates non-trivial
sound signals. Thus, a sophisticated machine leaning model is
needed rather than heuristic method. We reuse the similar CNN-
Transformer model without the optic branch and modify the output
as a binary classifier. We also use cross-entropy loss for training
the model.

3.3 Prediction Aggregation
The aggregation is conducted via an finite-state machine (FSM).
The state transition from the current gesture 𝑖 to a new gesture
𝑗 will be triggered when 𝑡𝑖 𝑗 -consecutive windows are predicted
to be of the gesture 𝑗 . Therefore, we have the gesture transition
matrix as 𝑡𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝐺 , where𝐺 is the states set of gestures including
the state where no gesture is presented. Considering the gestures
are usually mapped to atomic input operation, we disabled the
transition between two gestures, i.e., only transitions between the
non-gesture state and gesture state are allowed. In this way, the
aggregation is controlled by ten parameters.

Aggregation Optimization.we use the number of correct gestures
as our target function to optimize the ten aggregation parameters.
The correctly recognized gesture includes the gestures with whom
the recognition is perfectly matched or partially matched. As the
solution space is large, we use a random search to approximate the
optimal solution. The optimization is performed on dedicated data
and the results are reported on unseen data.
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Figure 5: AO-Finger finger gesture recognition logic built upon detection models.

3.4 Putting It Together
To give user an integral experience on gesture recognition, we put
all components together and designed the logic shown in Figure 5.
The system by default is in Not Ready state, where the incoming
audio and optic signals are dropped directly without processing.
AO-Finger uses the signal energy to detect the readiness for gesture
recognition. Specifically, if the standard deviation of the optic signal
energy in the last 3 seconds is less than 6, AO-Finger enters the
ready state and setup an countdown timer, which brings the system
back to Not Ready when expires. In addition, once the signal energy
become greater than 50, the system will be reset to Not Ready
immediately. This design drastically reduces false alarms brought by
daily activities and save battery as well as computation resources for
other tasks on the devices. When AO-Finger is in Ready state, the
acoustic and optic signals are fed into both fast gesture detection
and contact detection models, where the fast gesture detection has
the higher priority, i.e., once flick, pinch, or tap is detected, the
contact detection result is ignored. If no fast gesture is detected
and contact is detected, AO-Finger enters swiping mode, where
the thumb locations is continuously tracked and reported until the
the swiping is not detect for 1 second (i.e., exit swiping mode). To
further improve the responsiveness for multiple finger gestures in
a row, we also configure AO-Finger to 1) reset and restart readiness
countdown timer each time a fast finger gesture is detected; 2) reset
the timer when enter swiping mode and restart the timer when exit
swiping mode.

4 EXPERIMENT SETUP
4.1 Data Collection and Labelling
We collect data from participants using the hardware setup shown in
Figure 6(a). We develop a data collection tool which display random
gesture video to the users so that they can perform the designated
gesture in the time counting down period. In the meantime, we also
record a video using webcam of the user’s hand gestures which is
used as reference for manual data labelling. The data collection tool
captures the audio and optic data via USB connection to a laptop.
Both the MCU time of sensor data and video frames are saved for
data synchronization. We capture two stream of audio data at 41667
Hz and two optic sensors at 368 fps, including the X/Y coordinates.

Dataset Collection.We invite 20 volunteers for data collection,
which includes 17 males and 3 females in the age range of 23-
33. Each participant spends around 30 minutes on data collection
to receive an incentive gift card. We divide the data collection
in multiple sessions and take off/put on the wristband between
sessions to make sure the data captures. During these sessions,
volunteers change their postures freely (e.g., arms on the desk,
under the desk, on the chair arm, bent and straight). Each volunteer
contribute 5 sessions of which 4 session are 5-minute sessions for
positive samples collection. The last session is designed to capture
hard negative samples. In this session, the participant wear the
wristband andmove the hand/fingers freely by doing daily activities
such as typing on a keyboard, using smartphones/mouse, drinking
water, etc. We instruct the participant to perform hard negative
gestures such as swiping thumbs left and right without touching
index fingers, attempt pinch/tap gestures without actually finger
contacts. These negative data are critical for us to train a model
that is robust to false positives.

Data Labelling. We develop a data labelling tool for precise
start/end positions labelling on the collected data, as shown in
Figure 6(b). The tool displays the video frames on the left and one set
of sensor (one microphone and one optic sensor) signal on the right
side. To speed up the labelling, the tool automatically generates
start/end positions based on heuristics, e.g., audio signal energy,
peaks for flick/pinch/tap gestures and optic signal high/low plateaus
for swipe gestures. The labelling person only needs to verify the
automatically generated labels and make minor adjustments by
referencing to the videos.

4.2 Training Data Preparation
Given the labeled gesture data collected from our subjects (see
Section 4.1), in this part, we describe how the training samples are
generated in detail.

One critical problem for data preparation is the margin between
positive and negative samples. For each labeled gesture period,
multiple samples can be generated by moving the sampling window,
which is similar to the real-time gesture recognition. An intuition
is that samples should be considered as positive when they overlap
the gesture periods and the overlapping duration is longer than
a threshold. However, a hard threshold brings a problem that the
samples close to the threshold are similar. We found these similar
samples can severely confuse classifiers.
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Figure 6: The pipeline for training data collection and labelling. We record the sensor data and RGB videos simultaneously and
use the videos as reference for gesture labelling in our data labelling tool.

Raw Clips Generation.We first generate raw gesture clips and
then extract positive and negative samples online during training.
We label the start and end positions of each performed gesture on
the synchronized audio-optic data precisely following the labelling
guideline. For each labelled gesture period, we crop a signal segment
of 3 seconds with the gesture in the middle of the whole segment.

Training Samples Generation from Raw Clips. Take audio
signal as example, to generate positive gesture samples, we ran-
domly crop on raw clips with a sample window of fixed length 𝑙𝑤 ,
which contains 𝑁 = 𝑙𝑤 · 𝐹𝑠 audio data points, where 𝐹𝑠 is the au-
dio sampling rate. Let’s assume the labeled gesture window has a
start index 𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡 and end index 𝑡𝑙𝑎𝑏𝑒𝑙

𝑒𝑛𝑑
in raw clip, as highlighted

in Figure 7a. For the cropping, we make sure the complete labeled
gesture window is fully covered by sample window when the ges-
ture window length is small than 𝑙𝑤 (as shown in Figure 7a); and
the sample window is fully occupied by gesture window when the
gesture window length is larger than 𝑙𝑤 (as shown in Figure 7b). We
determine the starting index of the sample window 𝑡

𝑐𝑟𝑜𝑝
𝑠𝑡𝑎𝑟𝑡 as:

𝑡
𝑐𝑟𝑜𝑝
𝑠𝑡𝑎𝑟𝑡 =

{
𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑚𝑎𝑥 (0, 𝑡𝑙𝑎𝑏𝑒𝑙

𝑒𝑛𝑑
− 𝑙𝑤), 𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡 ) if 𝑙𝑤 > 𝑡𝑙𝑎𝑏𝑒𝑙

𝑒𝑛𝑑
− 𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡

𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡 , 𝑡
𝑙𝑎𝑏𝑒𝑙
𝑒𝑛𝑑

− 𝑙𝑤) if 𝑙𝑤 ≤ 𝑡𝑙𝑎𝑏𝑒𝑙
𝑒𝑛𝑑

− 𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡

(1)
where 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 () is a function to generate a random index number
within the given range. To generate negative samples, we have two
resources: 1) The none gesture segments in the raw clips with posi-
tive gestures (Soft Negative Samples); and 2) Raw clips of negative
samples from the pure negative sessions (Hard Negative Samples).
For soft negative samples, we randomly crop a window of length
𝑙𝑤 before 𝑡𝑙𝑎𝑏𝑒𝑙𝑠𝑡𝑎𝑟𝑡 or after 𝑡

𝑙𝑎𝑏𝑒𝑙
𝑒𝑛𝑑

; for hard negative samples, we just
randomly crop a window of length 𝑙𝑤 from the raw clip of negative
sessions.

Similarly, we apply the same cropping on optic signals so that
both modalities are synchronized. When a raw clip with positive
gesture is loaded during training, we use a parameter 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
to control the probability of cropping a soft negative sample vs.
positive sample. This helps us to control the percentage of negative
samples for a balanced training set. Hard negative samples are in
addition to these cropped negative samples. Note that the cropping

happens in realtime during training which serves as one of the data
augmentation techniques to make the model inference robust to
signal time shifts.

4.3 Machine Learning Pipeline
4.3.1 Data Augmentation. Since gestures performed by different
users are usually different, and gestures could also differ for the
same person under different trials as well. We found many interest-
ing insights through extensive human data labelling and analysis
(tens of hours of labelling). Flick gesture is most consistent across
all samples while pinch gesture can differ a lot. Some people tend
to keep the thumb and index finger in contact for a longer period
before separating them. Gestures are performed at various speed,
resulting different lengths (see statistics in Figure 8). The gesture
strength also varies resulting higher or lower signal energy. These
factors make the model trained with limited data performs poorly
on unseen data since the model can be severely overfitted.

We analyze the sensor signals from a physics point of view (e.g.,
moving speed, contact impact energy, friction noises, environment
background noises, etc.), and propose a set of data augmentation
techniques to enhance both acoustic and optic signals to avoid
overfitting. Specifically, we design four types of augmentations:

• Speed Augmentation.We randomly choose a scaling factor
𝑆𝑠𝑝𝑒𝑒𝑑 from a normal distribution 𝑆𝑠𝑝𝑒𝑒𝑑 ∼ N(1.0, 𝜎2). We
may generate 𝑆𝑠𝑝𝑒𝑒𝑑 multiple times to make sure 𝑆𝑠𝑝𝑒𝑒𝑑 is
within a given range [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥 ]. Given the speed scaling
factor, we draw 𝑁 ′ = 𝑆𝑠𝑝𝑒𝑒𝑑 · 𝑙𝑤 ·𝐹𝑠 audio data points during
the training sample generation instead. Then, we utilize
Akima interpolation [1] that fits audio signal well to resample
the 𝑁 ′ audio data points to 𝑁 and its corresponding optic
signals. 2

• Random Time Shift Augmentation. This step is done as we
randomly cropping training samples, described earlier train-
ing data preparation.

2We also tried a Python audio processing library Librosa [19] for audio speed augmen-
tation in frequency domain, which is much slower than interpolation while the results
are similar.
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• Amplitude Augmentation.We scale the amplitude of the sig-
nals by multiplying the signals by a scaling factor 𝑆𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

which is randomly drawn from a normal distribution 𝑆𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∼
N(`, 𝜎2).

• Jitter Noise Augmentation. To simulate the sensor noises, we
add random white noises to the signals.

We apply the above augmentations on both audio and optic signals
in a synchronized manner. There augmentation steps are applied in
real-time during model training, followed by signal pre-processing
described in Section 3.1.

4.3.2 Model Training and Inference. We train ourmodels on Google
Cloud Platform with Tesla V100 GPUs. To scale up parallel model
training for parameter fine-tuning, we configure a virtual machine
with 32 CPU cores, 64GB RAM and 4 Tesla V100 GPUs. We train
our models with Adam optimizer with a starting learning rate of
1e-4 with a decay of 0.9 every 200 epochs for up to 2000 epochs.
During inference, we stream realtime sensor data from wristband to
a Macbook pro via USB with Intel 6-Core i7 CPU and 16GB RAM for
model inference and results visualization. The detection happens
every 50ms with a moving window of 500ms with a stride length of
50ms. Then we run the aggregation to output the final prediction
result. Moving the whole inference pipeline to the wristband is our
future work.

5 EVALUATION
5.1 Dataset
We collected 10 hours of data from 20 subjects from various age
(22-32), gender (17 males and 3 females) and background (africa
american, asian, hispanic, and white), each subject contributed half
an hour on data collection. After labeling and data cleaning, we
around 3000 positive samples (about 600 samples for each gesture).
We also generate hard negative samples with sliding window of
a stride length of 1000 ms, which generates 3500 hard negative
samples. We reserve 5 individual sessions from participants whose
data are not used in the model training as user-independent test
data. We apply sliding window cropping on the raw test data and
generate about 500 test samples for each gesture, resulting a test
set of 3000 samples including negative class.

5.2 Fast Gesture Detection
The fast gesture detection model classifies the gestures into four
categories: flick, pinch, tap and none. We set the soft negative
sample cropping probability 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 0.3 to introduce additional
negative samples on-the-fly during training.

5.2.1 Sample Level Detection. Figure 9 shows the multi-modal net-
work classification results as normalized by each row on test sam-
ples. Apart from none gesture class, flick gesture has the highest
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Figure 9: Confusion matrix of fast gesture detection on test-
ing data set, each class has 500 test samples.

accuracy. This is mainly due to unique high frequency/energy acous-
tic features created by high speed index finger movement. A small
portion (~5%) of flicks are classified as pinch, which we think are
caused by “slow” flicks when the user puts more energy when con-
tacting thumb and index finger rather than separating them. There
is no flick gesture classified as tap because flick involves nearly no
optic signal changes. Tap gesture is the second most reliable due to
the strong optic signals, which distinguishes tap from pinch. We see
a small portion (~7%) of confusion between pinch and tap gestures.
This is mainly because pinch gestures sometimes also create optic
signal changes if the users move the thumb too much. Such errors
could be minimized by instructing the users on performing more
standard gestures. Pinch detection has the 83% precision, relatively
lower than flick and tap. The main reason is that many users pinch
gently, not generating sufficient acoustic signals nor optic features,
thus 8% of them are missed (i.e., classified as none gesture). Overall,
we have very few false positives with a high precision of 96% on
none gestures. Note that such results are sample level detection
result, we further aggregate the results in adjacent sliding windows
for more stable and robust recognition.

5.2.2 Ablation Study. We study the impact of multiple factors on
the model performance such as signal window length, percentage
of hard negatives, data augmentations and neural network archi-
tecture.

Signal window length. We show the influence of training sample
window length (i.e., 𝑙𝑤 ) on fast gesture recognition performance in
Figure 10(a). The F-score is reported as 0.7708, 0.9005, 0.707, and 0.67
when the 𝑙𝑤 is set to 0.3, 0.5, 0.8, and 1.0, respectively. We observe
that 𝑙𝑤 has very significant influence on the performance and the
best F-score in achieved when the window length is 0.5 seconds. On
the one hand, when the 𝑙𝑤 is shorter than 0.5 seconds, the captured
signals could be too similar to be distinguished as gestures have
shared finger motions. For example, the tap and pinch share the
same motion that is the thumb and index finger are moving toward
each other. However, the two gestures are different before and after

the shared finger motions, which needs a window longer than 0.3
seconds. On the other hand, given a longer signal window can
significantly reduce the SNR because majority segment are noises
(soft negatives are included).

Percentage of soft negatives.We also evaluate the impact of the
𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 defined in Section 4.2, which is a hyperparameter that
controls the probability of cropping soft negative samples from raw
data when we generate training samples on-the-fly during training.
We run experiments with four probabilities: 10%, 20%, 30% and 40%.
Figure 10(b) shows the result. The model achieves best performance
with 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 30%. When 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 gets smaller, the model does
not get sufficient negative samples in training, hence the resulting
model is more prone to false positives. As 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 gets larger, less
positive samples are generated while training. The performance
starts to drop as no sufficient positive samples are provided for
training. Balancing the training dataset with parameter 𝑃𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
tuning is critical for best performance.

Data augmentations. To validate our proposed data augmen-
tations improves the gesture recognition performance and helps
stabilize the training processing, we report the train/test loss with
and without augmentation in Figure 10(c). The figure shows that
the model trained without data augmentation overfits to the train-
ing data after 600 epochs, while the augmented training have
lower and more stable test loss. The test accuracy reported in Fig-
ure 10(d) also confirms that the model trained with data augmen-
tation (accuracy=87.6%) outperforms the non-augmented model
(accuracy=68.5%)

Neural network architecture. AO-Finger utilizes self-attention
transformer that has the strong capability to capture the temporal
pattern and relation residing in signals. We are interested in the
effectiveness of this architecture on our new sensing modalities and
how much performance improvement the transformer architecture
could bring to the gesture recognition. Therefore, we use a basic two
stream CNN model with out self-attention transformer encoders
as the baseline model. As shown in Figure 10(e), the baseline CNN
model reports F-score as 0.7827 and AO-Finger can achieve higher
F-score as 0.9005, which is a 15% improvement. This is because
the self-attention can guide the model to focus on gesture signals
rather than noise in the sample window.

Single model for all gestures. Best F1 score we achieved with
the same model on detecting 5 gestures is 0.7535, which is way
below the fast gesture detection model. The main reason is that
the model overfits to optic sensors in recognizing tap and swipe
gestures since the optic features are strong. While it tends to ignore
the acoustic features in swiping, which introduce false positives
(i.e., none gestures are classified as swipe gestures. This happens a
lot when users swipe thumbs left and right without touching index
finger.). It also justifies our design with a separate finger contact
detection model.

5.3 Fine-grained Swipe Gesture Detection
Finger contact detection is the key component whose performance
can largely influence the triggering of thumb tracking model. Dur-
ing the test, AO-Finger’s contact detection model reports a high
precision as 0.9197 and a recall as 0.7975 with a relatively low false
positive rate (0.0809). We observe some contact samples (20%) are
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Figure 10: We evaluate the following factors for ablation study: a). Signal window length; b). Percentage of soft negatives; c&d).
Data augmentation; e). Neural network architecture; f). Single model for all gestures.
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Figure 11: Aggregation results on a session data.

misclassified. This is because thumb moving without touch friction
also generates sound signals due to the tendons’ movement within
the wrist. We found the misclassification does not influence the
final user experience as the aggregation is applied on the detection
results. Moreover, once entering the continuous swiping mode, the
tracking will stop only when there is no swiping for 1 second. We
further study the usability of fine-grained swipe gestures in later
application study section.

5.4 Heuristic Aggregation Evaluation
Figure 11 shows the aggregated results on continuous data. We ob-
serve that the spikes due to misclassification can be suppressed by

aggregation. The naive aggregation cannot accommodate balance
between false positive and false negative, resulting in the false posi-
tive shown in the figure. Compared with the naive implementation,
the aggregation based on our proposed searching method is more
stable and can deal with misclassification that is more complicated.

AO-Finger also demonstrates strong robustness to false positives
thanks to the readiness detection module in Figure 5 and model
training with both soft/hard negative samples. False positives are
seldom triggered under noisy and challenging scenarios. Please
check our Video Figure to get a better sense of the performance.
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Figure 12: AO-Finger applications: a). Realtime sensor data visualization and gesture recognition on laptop; b). Fine-grained
gesture tracking; c). Interaction with AR glasses, the user can browser applications by swiping left/right, tap to select and flick
to exit.

5.5 Application Study
We experience AO-Finger in multiple applications as shown in
Figure 12: a) a realtime demo on laptop for gesture detection and
sensor data visualization; b) precise cursor control via fine-grained
gesture tracking; and c) interaction with AR glasses.

Realtime demo on laptop. We invite 4 users to try our demo and
two of them have no prior knowledge of our system. Users are asked
to perform fast gestures randomly and we count the correctness. We
collected 200 samples in total for each gesture, and find there are 12
flick gestures misclassified as pinch; 6 pinch gestures are classified
as flick, 8 classified as tab; and tab gesture has a high precision that
only 5 are misclassified as pinch. The average accuracy reaches
94.83% in this test. Such result is slightly higher than than our
offline sample level accuracy thanks to the aggregation and the
model has demonstrated good generalizability to new users.

Fine-grained gesture tracking. In this experiment, we want to
show the accuracy and usability of fine-grained swipe gesture track-
ing. The users are asked to control a virtual arrow position against
a ruler, as shown in Figure 12 b). Results show that arrow is follow-
ing swipe gestures smoothly and responsively due to high frame
rate. Users can easily move the arrow to specified position with
minimum trials. Please check our Video Figure for a live demo.

Interaction with AR glasses.We compare AO-Finger with different
interaction modalities listed in Table 2 on a commercial AR glasses.
The users are asked to interact with the AR glasses using the built-
in touchpad, speech recognition and hand tracking, as well as our
proposed AO-Finger . According to the major feedback, touchpad
is reliable to use due to the physical touch and haptic feedback.
It also enables fine-grained control on selecting apps by swiping
gestures. However, users have to raise the arms while using the
touchpad which incurs arm fatigue after a short period of contin-
uous use. Speech recognition is not preferred due to the limited
functionalities and it is not suitable to use in public environments.
Hand tracking on the tested AR glasses has noticeable lag and adds
significant computation overhead to the device which leads to over-
heating issues more frequently. AO-Finger enables basic interaction
with fine-grained control. It is highlighted that the inconspicuous,
effortless micro gestures are highly appreciated compared to other
modalities. The main negative feedback is the low sensitivity issue
to trigger swipe gestures (e.g., some swipe gestures are triggered

with a short delay since contact needs to be detected for trigger-
ing swipe mode), which we will address by fine-tuning the system
configuration parameters as future work.

6 RELATEDWORK
We introduce the related work from two topics:

Finger Gesture Recognition. Finger gesture recognition has
a long history. Recently, as XR becomes popular, infrastructure-
free solutions, due to its portable user experience, attracts ever-
increasing attention from the research community and industries.
Naturally, XR devices carries camera for finger gesture recognition.
However, the hand interaction is limited to the FoV of the camera
and results in user’s fatigue. To solve the FoV problem, solutions
staying with user’s hand is required. Gesture tracking using ring-
shape devices [9, 17, 42] on fingers are proposed. However, ring-
shaped devices cannot achieve the small dimension of a real ring
(the space on the finger is very limited), thereby having a hard time
creating a seamless and effortless experience in daily use. Hands-
free solutions on the wrist nowadays attract more attention due to
their better user experience. Beamband [15] utilizes an ultrasonic
array on the wrist to detect the partial hand shape and infer the
hand gesture. Due to the low resolution of the ultrasonic beam, fine-
grained finger gesture tracking is not supported. Several studies
[13, 36, 38, 39] proposed a updated version, i.e., to reconstruct 3D
hand pose from camera frames of a hand part such as palm and
hand back. The proposed systems utilize data-driven models to infer
the finger gestures. While optic sensing can capture high fidelity
motion, these solutions require a large area of hand to be visible to
make inference feasible and consumes much more computational
resources. Instead of challenging finger gestures inference using
part of the hand, more studies choose to utilize the wrist activities
as large part of tendons that controls gestures go through wrist
and causes deformation on wrist. Pressure sensors [7], Barometric
sensors [28], ultrasonic sensor [14], IR sensors [20], EMG sensors
[26], and IMU [34, 40] are proposed to capture the wrist activities.
There are also several studies leverage modality fusion, such as
EMG and IMU [6].

Different from the existing works, AO-Finger utilizes optic sen-
sors to capture the fine-grained thumb information and a modified
stethoscope microphone for the global information of the gestures
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Table 2: Interaction modalities for AR glasses.

Modality Advantages Limitations

Touchpad Physical touch, reliable Arm fatigue, involve macro body movements
Speech recognition Hands-free Not suitable in public
Hand tracking Hands-free Latency; line-of-sight and lighting condition requirement
AO-Finger Inconspicuous, fine-grained, hands-free Require extra hardware

on wrist. The fusion of the two sensing modalities provides an
integral fine-grained finger gesture recognition experience.

AR/VR Interaction. The ever-increasing demand of XR appli-
cation brings new requirements (e.g., convenient to access and easy
to use) to the interaction technologies. Beside the traditional in-
teraction such as touchpad [10], hand-held controller [22], camera
[31], and voice [11], many input methods with better user experi-
ence have been proposed and discussed. Zhang et al. [41] proposed
Tapskin, a IMU-based system that can turn skin into a touch surface.
Plopski et al. [25] discussed the gaze/eye-tracking interaction in a
comprehensive survey Tauscher et al. [30] discussed the feasibility
of using EEG on XR headset.

AO-Finger shares the same vision with these studies and brings
better XR experience by providing effortless inconspicuous and
fine-grained finger gesture interaction.

7 DISCUSSION
Limitations. AO-Finger is only a research prototype in current
stage, it has several major limitations: 1) Offloading inference. Cur-
rent system offloads sensor data to a laptop via USB for model
inference, which is only sufficient to validate the gesture detection
performance. To make it as a well engineered product, we need
to move the computation to the wristband. 2) Conditioned gesture
detection. Current system requires the user’s hand to be relatively
static for a short period to trigger the detection. While this design
significantly reduces the false alarms, it adds additional friction
on the user to use the system. 3) Validation on large population.
Due to the pandemic, we only have access to 20+ users for data
collection and testing. Although AO-Finger has shown promising
results on this group of users, we need to validate the system on a
larger population to make it as a mature solution.

Future Work. We have the following directions as future work:
1) On-device model inference. AO-Finger uses BLE SoC for both
wireless communication and data processing, which has very lim-
ited computation resources. In order to achieve on-device model
inference, we will introduce a separate MCU specifically for data
processing and model inference. 2) Sensing hardware optimization.
We also plan to explore and enhance our sensing hardware. We
will explore optic sensor with larger FoV so that finger movements
can be more reliably captured. A array of modified microphones
could enable more features in hand gesture tracking. 3) Large scale
data collection. Although our physics based data augmentation has
shown tremendous help given we have limited data. Large scale
data collection (e.g., hundreds or more) is still needed for a mature
solution. We will seek ways to do that at such scale. 4) System
usability study. Our system provides a fine-grained and effortless
finger gesture tracking experience to users. To further quantize the

usability of AO-Finger, we plan to do subjective usability studies,
such as System Usability Scale (SUS) [2] and NASA Task Load Index
(TLX) [23].

8 CONCLUSION
In this paper, we propose AO-Finger , a hands-free and fine-grained
gesture sensing system aiming for next-generation XR input expe-
rience. AO-Finger fuses on-wrist direct optic sensing and indirect
acoustic sensing. We design a set of inconspicuous and effortless
micro gestures for AO-Finger and implement AO-Finger with a
modified stethoscope microphone and two high-speed optic mo-
tion sensors. The fine-grained gesture sensing is achieved via a
two-branch architecture: a CNN-Transformer based fast gesture
(i.e., flick, pinch, and tap) detector and a continuous fine-grained
finger tracking model based on finger contact detection. To further
enhance system robustness, we propose to utilize data augmen-
tation for stabilized model training and aggregation to suppress
false alarms. The extensive evaluation shows AO-Finger can per-
form accurate and robust finger gesture sensing as well as provide
excellent user experience.
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