
1

An Incremental Learning Classification Algorithm
based on Forgetting Factor for eHealth Networks

Li Yang1, Kun Wang1, Chenhan Xu1, Chunsheng Zhu2, Yanfei Sun1

1 Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education,

Nanjing University of Posts and Telecommunications, China.

Emails: islyang@foxmail.com, kwang@njupt.edu.cn, xchank@outlook.com, njsyf@vip.163.com
2 Department of Electrical and Computer Engineering, The University of British Columbia, Canada.

Email: cszhu@ece.ubc.ca

Abstract—The advances of network technology and mobile
communication technology are making eHealth possible. In
eHealth systems, physiological data and relevant context-aware
data are acquired continuously and in real time. At the same time,
such large-scale data results in huge challenges in the aspect of
real-time big data processing since eHealth data appears in the
form of data stream. Therefore, we propose a novel incremental
learning algorithm, namely α-SVMSGD, which improves the
SVMSGD (Support Vector Machine-Stochastic Gradient Descent)
algorithm by updating the training data with the continuous data
stream. Besides, this α-SVMSGD may handle the problem that
original SVMSGD cannot further mine the useful information
in unclassified data. In α-SVMSGD, the process of training data
updating is completed by introducing the concept of forgetting
mechanism, in which the forgetting factor α is introduced to weed
out useless training data. α-SVMSGD is applied into ambient
assisted living communications, and further incorporated into
the data filtering layer of a local data processing architecture
(LDPA) to reduce data redundancy. Simulation results confirm
that the proposed algorithm is a promising data redundancy
solution for classification without loss of accuracy in the case of
real-time data stream.

Keywords—eHealth, Incremental learning, Support vector ma-
chine, Stochastic gradient descent, Forgetting factor

I. INTRODUCTION

Due to the hospital capacity and medical staff are limited

concerning the increasing treatment requests, traditional health

care services can hardly satisfy growing population’s needs.

Under this background, for the benefits of big data technique,

a new kind of eHealth service monitoring people’s lives with

intelligent device is developing rapidly. In this current era

of big data [1], the Internet transmits a great deal of data,

followed with the data storage and data processing by servers

or clouds. Besides, mobile networks collect lots of data all

around people’s lives. Due to the limitations of traditional

data processing methods, they are often used to describe those

complex or large data sets in the network.

Specifically, the growing amount of data collected by mobile

eHealth networks is more and more pervasive with the devel-

opment of hardware. Meanwhile, collecting nodes are required

to get more data [2] and the number of them tends to increase

in networks. All the above factors increase the scale of network

and the volume of data transferred in the e-Health network.

Since the energy and functionality of mobile nodes are

limited, data has to be aggregated and processed in a central

sever. However, with the increment of network size which

leads to the emergence of more powerful functions, it is likely

to cause that the central server is not capable of analyzing all

the data due to various factors (e.g., routing blocking resulting

from malicious nodes or network congestions). For this reason,

how to efficiently process these data is a very important

problem. In our previous work, we proposed the framework of

a local data processing architecture (LDPA) to provide the idea

of quantifying the result of data analysis in ambient assisted

living communications (AAL) [3]. However, data redundancy

issue still exists in data filtering layer (DFL) of LDPA. To deal

with this problem, this paper utilizes an improved SVMSGD

(Support Vector Machine-Stochastic Gradient Descent) [4]

algorithm by introducing the concept of forgetting factor α
to update training data. Besides, in original SVMSGD, some

past information in classifier may be new classifications, and

SVMSGD cannot further process this kind of data. We then

propose an incremental learning algorithm α-SVMSGD and

further incorporate it into data filtering layer (DFL) of LDPA

for mining useful information from unclassified data.

To this end, we mainly focus on efficient data processing

and mining useful data classification from the original data and

increasing data to save storage space and reduce the probability

of data loss due to network congestion. The contributions of

our work are summarized as follows:

• A forgetting factor method is proposed to mine useful

information from the unclassified data. It can mine new

useful information from these useless or incremental

data, and reduce history sample storage and the scale of

training sample set.

• In α-SVMSGD, we adopt adaptive method to adjust the

value of α. We set a threshold for α firstly, and then

calculate the error between initial threshold and α value

of sample which has been training for several times.

Finally, we choose α with maximum error weights as

a new threshold and begin the next round of the training

of new data sample.

The rest of paper is organized as follows. Section II reviews

related work. Section III presents the overview of LDPA.

IEEE ICC 2016 SAC E-Health

978-1-4799-6664-6/16/$31.00 ©2016 IEEEAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

2

Section IV describes the α-SVMSGD algorithm in detail.

Section V shows the performance evaluation and Section VI

concludes the paper.

II. RELATED WORK

Many researchers focus on algorithms and strategies for big

data mining. In the work [5] authors proposed a method of a

Keyword-Aware Service Recommendation to provide personal

service recommendation. This method uses keywords to iden-

tify users’ interests and introduces a user-based Collaborative

Filtering algorithm for appropriate recommendations. In the

work [6] authors presented an incremental learning method

based on LS-SVM. This method uses self-adaptive to pure the

sample. It prunes threshold and sample increment according

to the performance of classifier is good or poor. In [7], the

authors proposed a RVNS queue architecture(IRQA) which

contains three layers, aiming to improve the reliability of data

transmission and the speed of data processing. Authors of [8]

proposed a model-matching algorithm based on improved BP

which allows uers to extract information according to the order

of data’s arriving time. Besides, the algorithm can improve

the matching speed and accuracy. A dynamic assignment

scheduling algorithm was proposed in [9] which is used to

improve performance of the parallel machines. It also built a

stream query grapy to calculate the weight of every edge.

The other aspect concentrates on methodologies for a mass

of data storage. In the work [10], authors raised a method

called privacy-aware cross-cloud service composition. This

method proposes evaluations of services through QoS history

records to increase the credibility. Also, it adopts a k-means

algorithm as the filter for typical historical records. In the

work [11], authors presented a model about efficient storage

based on code erasing. In this model, a huge mass of data is

divided into all kinds of storage nodes. In order to improve

the robustness of the whole storage system, different coding

parameters can be set up by different users. Liang et al.

presented a digital hormone based classification algorithm

[12]. For the classifier can be updated without a big sample-

buffer, which makes it can saves space when stores temporary

records. Besides, it predict the accuracy of class label. In

[13], authors presented an architecture of home M2M networks

according to the service ranges and the type of applications. A

confidential and lightweight data discovery and dissemination

protocol was proposed in [14] which can ensure authenticity

of broadcast data item. In the work [15], authors developed LI-

BLINEAR as an easy-to-use tool to process large sparse data.

In order to solve the optimization problems of support vector

machines, the authors proposed an effective stochastic sub-

gradient descent algorithm in [4]. In [16], authors proposed

a finite sample analysis method to prove that ASGD takes a

huge number of samples when it chooses learning rate. These

three algorithms are closely related to our proposal. Therefore,

we will make comparisons in Section V.

All in all, even many researches on above two directions

have been implemented, there are very few classification algo-

rithm for processing and storage of raw data and lost data. To

solve these problems, we propose a novel incremental learning

algorithm based on forgetting factor, namely α-SVMSGD.

According to trained classifier model with SVMSGD to train

incremental data. We use forgetting factor to decide whether

to delete or retain data. Thus it can reduce history sample

storage and the scale of the training sample set. In this way,

we realize the incremental learning, and constantly improve

the adaptability and accuracy of the model.

III. OVERVIEW OF LDPA

LDPA is a three-layer architecture as shown in Fig. 2. The

first layer is Data Gathering Layer (DGL) which is responsible

for collecting and storing relevant collected data. The second

layer is Data Filtering Layer (DFL). Data entering DFL are

divided into static data and real-time data after filter. Static

data reflects sensors’ status, while a real-time data stream

reflects quality of life. For limited buffer space and increasing

complexity of risk function, a classifier is designed in this

layer. The third layer is Data Analyzing layer (DAL). In this

layer, data will be reorganized into a neighborhood structure.

In DGL, there is a distributed sensor architecture deployed

in elderly people’s living environment. Data collected by sen-

sors will gather and be processed in local. Servers receive the

data that is realigned according to timestamps from sensors.

They adopt a buffer cleaning mechanism because the buffer

spaces are limited.

In DFL, there is a filter designed and a relevant data set

introduced to give reference. Packets are decapsulated at the

moment they enter DFL. At the same time, filter checks

representative data in terms of retrieval range from relevant

data set. This mechanism can ensure the data completeness

and accuracy. There is also a level division method in this

layer. All the data in solution space ζ of RVNS will be

classified into a corresponding level, and we call that RVNS

queue construction. DAL is a layer of reorganizing data into

neighborhood structure. The idea of risk function is introduced

firstly. Reduced Variable Neighborhood Search (RVNS) is

used to reconstruct neighborhood structure and select a local

optimal solution. For detailed design of RVNS queue, two

factors, the size of solution space and the interval of neighbor-

hood reconstruction, can influence its effectiveness. At last, we

need to take care of the terminal condition of RVNS. Different

conditions have different processing method. If the former is

considered as terminal condition, problems still exist. In this

case, LDPA needs to send a report of which results must be

at its peak. Also, the traditional terminal condition needs to

be changed. If the latter is considered as terminal condition,

at the moment we achieve the maximum time, RVNS stops.

What we focus in this paper is to solve data redundancy

of classifier part in DFL. Therefore, a proposed α-SVMSGD

algorithm will be described in detail accordingly.

IV. α-SVMSGD ALGORITHM

A. Algorithm design

In this section, we mainly introduce the main structure of

our proposed algorithm. This structure, as shown in Fig. 2,

contains two parts, training module and classification module.

Training module is responsible for the training and updating

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 1: Architecture of LDPA

the classifier model while classification module is responsible

for showing the classification and providing the test data set.

Fig. 2: Structure of α-SVMSGD Algorithm

In training module, characteristic of data samples need to

be extracted firstly, and then some characteristics are selected

to train with SGD. In this way, the training of classifier model

has been done. After this, the model needs to be evaluated with

test data set. At the same time, classification module needs to

provide test data set for the classifier model to evaluate the

model. Test data set also needs to extract features similar as

training data set. Then we can see the classification results

in classification module. Especially, we provide α-SVMSGD

algorithm based on forgetting factor to evaluate the classifier

model in training module.

We use the following definitions to describe our proposed

α-SVMSGD algorithm.

Definition 1. The form of objective function:

obj(ω) = (1/2λω2 + c

n∑

i=1

l(zi, ω)

yi(ω
Txi + b)− 1 ≥ 0, i = 1, 2, · · ·n)

(1)

where ω is the parameter, (z1,· · ·zn) are the training examples,

zi = (xi, yi), y ∈ +1,−1 is classification marker, 1/2λω2

is a regularization term, c is the penalization parameter, and

l(zi, ω) is the loss function.

Definition 2. The form of loss function:

l(zi, ω) = λω2 +max0, 1− yωT f(x) (2)

where f(x) ∈ Rd, λ > 0, f(x) maps x to a d-dimensional

separable space.

Definition 3. SGD selects a single example z and uses the
equation (4) to update w:

{
ωt+1 = ωt − γtλωt ytω

T f(xt) > 1

ωt+1 = ωt − γtλωt − ytf(xt) otherwise
(3)

where γt is learning rate of the t step, γ is a regularization

constant.

Definition 4. According to normal Karush-Kuhn-Tucker, we
redefine some parameters in order to get more information
from a mass of data. Optimal hyper plane satisfies the follow-
ing condition.

ω =
∑

i

αiyiH(xi), 0 ≤ αi ≤ 1,
∑

i

αiyi = 0 (4)

where αi = ri/Ti, ri represents the number of support vectors

for the ith sample after training. Ti represents the total number

of test set training. αi denotes the forgetting factor which

represents the supporting vector ratio of the ith sample after

T times training of test set.

B. Algorithm description

In this section, we introduce an incremental learning algo-

rithm based on forgetting factor based on SVMSGD algorithm,

which we call α-SVMSGD. Firstly, it uses normal SVM to

train classifier. Then, the trained classifier is used to predict

the data. At each iteration, the SVMSGD processes a single

sample in random [12]. If the data is not in any category, they

need to be trained again in the classifier. This method can

constantly optimize the classifier model. Then, the model will

adapt to the new data environment. The mechanism can be

divided into three steps. First we need to determine classifier

and classifications of feature vector. The second step is to train

new data sample based on forgetting. The third is to decide

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 1 α-SVMSGD Algorithm

Inputs: λ, l(), c

Outputs: ω, α

Procedure: Function α-SVMSGD()
1 Begin
2 Initialize β, γ, δ, n

3 obj(w) = 1/2λω2 + c
∑n

i=1 l(zi, ω) //Train classifier

4 SVM.SGD()

5 for(T=1 to n)
6 if αi = 0 or δ ≤ αi ≤ 1

7 StoreSample()

8 else if β ≤ αi < δ

9 StoreSample(αi > δ)

10 else Delete(0 < αi < γ)

11 end if
12 ei = P − αi

13 //Calculate the difference between training

14 sample and set threshold, where P = {β, γ, δ}
15 end for
16 α = max{β, γ, δ} //Update α

17 End

how to deal with these data samples, delete, retain, or others.

Here we explain each step of this algorithm in detail.

S1: The determination of classifier and classifications of
feature vector

S11 According to the number of classifiers, a relatively large

sample set (usually need to have a positive and negative sample

according to Definition1) is established.

S12 Determine the classifications of feature vectors. Train-

ing steps are shown as follows:

• Use classifier to classify the characteristics of all sample

set;

• The relative values of each feature vector in each clas-

sifier are calculated separately according to the selected

kernel function;

• Compute covariance matrix space according to the rela-

tive values of these features;

• Householder transforms to covariance matrix space;

• Calculate feature coefficient;

• Obtain model parameter according to Definition 1, 2.

S2: Train new data sample based on forgetting factor
S21 Randomly choose subsets of the new data samples

according to Definition 3.

S22 Judge the correctness of the classification of sample set

B1 according to the initial classifier τ1 , and B1is divided into

test error set Berr and test set Bok.

S23 If Berr is empty, iteration is over. Choose a new sample

set for training. If Berr is not empty, let the union of the

support vector set A1
sv in the original data sample and Berr

be a new training set, then we can get a new classifier τ2 and

support vector set. In order to build a new incremental sample

set B′
1 for the newly generated classifier, it needs to merge the

remaining sample from set A with the set Bok.

S24 Repeat the steps above.

S3: Delete and retain data sample
In this step, we use Definition 4 and get forgetting factor

αi of each sample set. Specific methods are as follows:

S31 In the step S22, each sample in Berr will be assigned

to 0, that is ri = 0; each sample in Bok will be assigned to

0, that is ri = 1.

S32 After T times training, we can get the value of the

forgetting factor αi.

S33 According to the prediction incremental learning mech-

anism based on the forgetting factor αi, the data sample is

deleted or preserved.

We set up three threshold β, γ, δ and adjust the ratio

of delete and retention of data samples through adaptive

technology flexibly. Processes are shown as follows:

Step 1 : set three threshold β = 0.3, γ = 0.4, δ = 0.7;

(when α is less than 0.3, we hold that the support vector

(SV) ratio of data sample is very low, then we take these data

samples as non-support vector (NSV). When α is between 0.3

and 0.7, these data may be support vector samples, or non-

supporting vector samples. When α is greater than 0.7, we

regard these data as support vector data.)

Step 2 : train data sample and get the α values of the data

sample;

Step 3 : use the following formula to calculate the updated

error ei between the sample and the set threshold after n times

of training, and select maximum error weight of α as a new

threshold, so as to update the value of β, γ and δ.

ei = P − αi(1 ≤ i ≤ n) (5)

where P is the set threshold {β, γ, δ}.
Step 4: according to the rules to remove or retain data, rules

are as follows:

If 0 < αi < β, it means that after many times training, the

support vector (SV) ratio of data sample is very low. We take

these data samples as non-support vector (NSV), so deleting

them will reduce the storage of raw data and improve the

training speed.

If β ≤ αi < δ, select a sample α ≥ γ as the test set of next

iteration, and accelerate the convergence speed of the support

vector set.

If δ ≤ αi ≤ 1, directly retain data set sample as the next

test sample. The pseudo-code of α-SVMSGD is shown in

Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation settings

This section shows the performance of α-SVMSGD algo-

rithm through three groups of simulations. In this paper, a

server is simulated using python. We use two data sets, mnist9

[17] and rcv1 [18]. Among them, mnist9 contains 60000 data

and rcv1 contains 8000 data. Mnist9 is mainly used in Fig.

3(a) and Fig. 3(b) while rcv1 is mainly used in Fig. 4(a) and

Fig. 4(b). We set λ to 10−5.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

5

(a)

Fig. 3: (a) Classification error rate VS. training time (b) Classification error rate VS. number of passes

(a)

Fig. 4: (a) Classification error rate VS. training time (b) Classification error rate VS. number of passes

There are three groups of simulation being designed. The

first group is to compare classification error rate with training

time, number of passes and training size. We compare α-

SVMSGD algorithm with LIBLINEAR [15], SVMSGD [4]

and SVMASGD [16]. The results are shown in Fig. 3-5. The

second group is to compare NSV-rate changes with sample

subset size in different β, and the results are shown in Fig.

6. The third group is to compare training speed among α-

SVMSGD, SVMSGD and SVMASGD and the results are

shown in Fig. 7.

B. Simulation results

Fig. 5: Classification error rate VS. training size

1) Comparison of Classification error rate: Fig. 3(a)

shows that data sample classification error rates of four al-

gorithms are decreasing with training time. When the training

Fig. 6: NSV-rate VS. sample subset size in different values of

β

Fig. 7: Training time VS. training size

time is not more than 0.2, we can see that the lines of four

algorithms classification error rate are all violent fluctuations,

but SVMASGD and α-SVMSGD are relatively stable. With

the extension of training time, α-SVMSGD is superior to the

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

6

other algorithms. Especially, when the training time is among

0.4 and 0.5, we can find it is better than SVMASGD.

Fig. 3(b) shows the changes of data sample classification

error rate with number of passes. Training time is linear related

to number of passes, so Fig. 3(b) is similar to Fig. 3(a). We can

see that the effectiveness of α-SVMSGD and SVMASGD is

more stable than other two algorithms. But when the number

of passes is between 0.5 and 1, our proposed algorithm is

much better.

It is shown in Fig. 4(a) that classification error rates of

four algorithms are decreasing with training time. α-SVMSGD

and SVMASGD are more stable than the other two. With the

extension of training time, α-SVMSGD is sometimes superior

to SVMASGD. Especially, when the training time is in 1.5.

Similar to Fig. 3(b), we can clearly find that α-SVMSGD

has better stability and low error rate than the other three

algorithms in Fig. 4(b), especially when the number of passes

is less than 1.

Fig. 5 shows the classification error rate of three algorithms

are decreasing with sample training size. We can see that

when the data sample training size is less than 30000, the

classification size is much better than the other two algorithms.

With the increasing scale of data sample, the effect of α-

SVMSGD is similar to the others.
2) NSV-rate changes with different β: Fig. 6 shows the

relationship between sample subset and the ratio of NSV in

different value of β. It is quite clear that the ratio of NSV

will decrease with the decrease of β. Also, the value of β is

not as small as possible. If it is too small, the ratio of NSV is

instability.
3) Training speed comparison: It is illustrated in Fig. 7

that training time of three algorithm are all increasing with

data sample size. As data sample training size is getting larger,

the server of mobile eHealth networks will be under more

pressure. Therefore, training time is increased. The effect of

α-SVMSGD is much better than SVMASGD and SVMSGD,

especially when the size of data sample is larger.

VI. CONCLUSION

The eHealth systems are faced with the challenges of rapid

analysis and processing of increasing number of data. To

solve the data redundancy issue in data filtering layer of

our previous work LDPA, an incremental learning algorithm

based on forgetting factor, i.e., α-SVMSGD, was proposed

for mobile eHealth networks. Based on SVMSGD algorithm,

we introduced forgetting factor mechanism to mine useful in-

formation from unclassified data, since in original SVMSGD,

some past information in classifier may be new classifications.

When more incremental data are collected from nodes, we

put them into the classifiers which are already trained by

SVMSGD. Forgetting factor method was utilized to decide

how to deal with these redundant data. This method not only

can improve the speed of data processing, but also can save

storage space.

ACKNOWLEDGEMENT

The authors would like to thank NSFC (61572262,

61100213, 61571233, 61373135, 61572172); ZTE

Research Cooperation Project (ZTE20160106); SFDPH

(20113223120007); NSF of Jiangsu Province (BK20141427),

NUPT (NY214097); Priority Academic Program Development

of Jiangsu Higher Education Institutions; Open research fund

of Key Lab of Broadband Wireless Communication and

Sensor Network Technology (NUPT), Ministry of Education

(NYKL201507); Huawei Innovation Research Program

(YB2014010048).

REFERENCES

[1] M. Viceconti, P. Hunter, and R. Hose, “Big Data, Big Knowledge: Big
Data for Personalized Healthcare,” IEEE Journal of Biomedical and
Health Informatics, , vol. 19, no. 4, pp. 1209-1215, 2015.

[2] A. Hristova, A. M. Bernardos, and J. R. Casar, “Context-aware ser-
vices for ambient assisted living: A case-study,” Proceedings of the
First International Symposium on Applied Sciences on Biomedical and
Communication Technologies, 2008, pp. 1-5.

[3] K. Wang, Y. Shao, L. Shu, et al., “LDPA: a local data processing architec-
ture in ambient assisted living communications,” IEEE Communications
Magazine, vol. 53, no. 1, pp. 56-63, 2015.

[4] S. Shalev-Shwartz, Y. Singer, N. Srebro, et al., “Pegasos: Primal estimated
sub-gradient solver for svm,” Mathematical programming, vol. 127, no.
1, pp. 3-30, 2011.

[5] S. Meng, W. Dou, X. Zhang, et al., “Kasr: a keyword-aware service
recommendation method on mapreduce for big data applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp.
3221-3231, 2014.

[6] Y. Liu and Y. Liu, “Incremental learning method of least squares
support vector machine,” IEEE International Conference on Intelligent
Computation Technology and Automation, 2010, pp. 529-532.

[7] K. Wang, Y. Shao, L. Shu, et al., “Mobile big data fault-tolerant
processing for eHealth networks,” IEEE Network, vol. 30, no. 1, pp. 36-
42, 2016.

[8] K. Wang, L. Zhuo, L. Shu, et al., “A model-matching algorithm based
on improved BP over out-of-order streams,” in Proc. IEEE ICC, 2014,
pp. 1849-1853.

[9] K. Wang, Y. Yu, and B. Liu, “DAS: A dynamic assignment scheduling
algorithm for stream computing in distributed applications,” in Proc. IEEE
GLOBECOM, 2013, pp. 1654-1659.

[10] W. Dou, X. Zhang, J. Liu, et al., “Hiresome-ii: towards privacy-
aware cross-cloud service composition for big data applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 2, pp. 455-
466, 2013.

[11] J. Yu, F. Jiang, T. Zhu, “RTIC-C: A Big Data System for Massive
Traffic Information Mining,” IEEE International Conference on Cloud
Computing and Big Data, 2013, pp. 395-402.

[12] H. Liang, L. Jin, L. Zhao, “A new data stream classification algorithm,”
2013 International Conference on Measurement, Information and Con-
trol, 2013, pp. 477-481.

[13] Y. Zhang, R. Yu, W. Yao, et al., “Home M2M Networks:Architectures,
Standards, and QoS Improvement,” IEEE Communications Magazine, vol.
49, no. 4, pp. 44-52, 2011.

[14] D. He, S. Chan, Y. Zhang, et al., “Lightweight and Confidential
DataDiscovery and Dissemination for Wireless Body Area Networks,”
IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 2, pp.
440-448, 2014.

[15] R. Fan, K. Chang, C. Hsieh, et al., “ LIBLINEAR: A library for large
linear classification,” The Journal of Machine Learning Research, vol. 9,
pp. 1871-1874, 2008.

[16] W. Xu, “Towards optimal one pass large scale learning with averaged
stochastic gradient descent,” Technical report, arXiv:1107.2490, 2011.

[17] Y. LeCun, L. Bottou, Y. Bengio, et al., “ Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278-2324, 1998.

[18] D. Lewis, Y. Yang, T. Rose, et al., “ RCV1: A new benchmark collection
for text categorization research,” Journal of Machine Learning Research,
vol. 5, pp. 361-397, 2004.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 25,2021 at 20:24:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

