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Abstract—Due to the premise of uniqueness and acceptance, fingerprint has been the most adopted biometric technologies in
high-impact applications (e.g., smartphone security, monetary transactions and international-border verification). Although there are an
array of commercial fingerprint scanners across different sensing modalities including optical, capacitive, thermal and ultrasonic,
existing fingerprint technologies are vulnerable to spoofing attacks via fake-finger [1]. In this paper, we investigate a new dimension of
fingerprint sensing based on the friction-excited sonic wave (in simpler words, "voice of fingerprint”) from a user swiping his fingertip on
everyday surfaces. Specifically, we develop SonicPrint to leverage the intrinsic fingerprint ridge information in sonic wave for user
identification. First, the complex ambient noise is isolated from the sonic wave using background isolation and adaptive segmentation
models. Afterward, a series of multi-level friction descriptors that highlight the target fingerprint information is extracted. These
descriptors are fed to a specially designed ensemble classifier for user identification. SonicPrint is practical as it leverages in-built
microphones in smart devices, requiring no hardware modifications. As the first exploratory study, our experimental results with 31
participants over three different swipe actions on 12 different types of materials show up to a 98% identification accuracy.

Index Terms—Adoptable biometrics, fake-finger spoofing, surface friction, fingerprint-induced sonic effect, user identification.
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1 INTRODUCTION

Fingerprint

This paper asks the following question: can we enable
everyday surfaces in the daily environment as fingerprint
scanners, while ensuring security against spoofing attacks? -
Such a capability can transform the biometric domain by identified
removing the dependency on special fingerprint hardware

and reshape our interaction with surrounding objects. For

instance, common surface materials (e.g., leather, plastic, O
fabric) could enable user identification while having re-

silience against fingerprint phantoms, i.e., fake-fingers [2],

[3]. The smart-devices (e.g., smartwatch, voice assistant,

curved smartphone) that have unique designs can now

provide fingerprint sensing without any hardware modi-  Fig. 1. SonicPrint: A new dimension of fingerprint sensing by using sonic
fications. Even more, we could enable biometrics without Wave from surface-swipes for secure user identification.

borders by allowing the users to transfer fingerprint-related
attributes over communication platforms.

Till date, various types of fingerprint scanners have been
proposed utilizing optical, capacitive and thermal sensors
[4]. However, these scanners share a fatal weakness: vul-
nerability to fake-finger spoofing [1]. Even the upcoming
in-display ultrasound sensors, targeted towards enhancing
usability, are susceptible to 3D finger models [5]. As a
countermeasure, researchers have suggested a secondary
dimension of security (e.g., blood flow [6], precipitation [7]),
yet they have poor generalization across spoof materials
besides introducing additional hardware overhead. Other

Sonic Response Attacker
B Denied

»
&

r—————————

biometrics, including voice [8], [9] and faceID [10] can also
be compromised using replay and impersonation attacks
and thus fail to achieve high user acceptance.

Taking a step back, the requirement for our target bio-
metric application is four-fold: (1) Cost-effective: the new
scanner-less method should utilize low-cost off-the-shelf
sensors that are widely used in smart-devices; (2) Accessible:
the biometric trait should be available from surfaces with di-
verse flexibility, texture and composition; (3) Easy-to-use: we
hope to enhance the user acceptance by providing free-form
sensing; (4) Secure: compared to the traditional fingerprint
methods, our proposed approach should be resilient against
o A. Rathore, C. Xu, W. Zhu, A. Daiyan, W. Xu are with the Department  spoofing attacks using fake-fingers.
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tion that the sonic wave from a user swiping his fingertip
on a surface can serve as biometric traits. Since every person
has a unique fingerprint, we hypothesize that the sonic
waves resulting from two users swiping their fingertips
on a common surface should be different. Although the
statistical properties of sonic may change depending on
user’s swiping speed, pressure or surface roughness, the
inherent uniqueness is dependent on the surface texture (i.e.,
fingerprint ridge patterns) and the finger’s constitution. If
this hypothesis holds, the fingerprint-induced sonic effect
(FiSe) can be acquired from the microphone in smart de-
vices. The goal of this work is to explore the knowledge and
validation of a new fingerprint sensing modality and open
discussions for emerging mobile security research.

Our goal is to transform everyday surfaces into finger-
print scanners. To achieve this, three challenges need to
be addressed: (1) The FiSe is typically of low power and
submerged in dynamic background noises. How to acquire
the target FiSe without any information loss? (2) To enable
high accessibility and acceptance, it is important to provide
freedom to the users while swiping the surface. In the case
where user’s swiping speed and pressure is not controlled,
how to select appropriate features which closely resemble
the fingerprint? (3) For real-world applications, it is critical
that the FiSe cannot be compromised. How to evaluate the
vulnerability of our system which relies on characteristics of
both fingerprint and audio domain?

In this work, we propose a systematic framework that
leverages the FiSe of a user swiping on smartphone and
other surfaces as a new biometric. We first validate the
uniqueness of sonic patterns by comparing the resulting
spectrum of fingerprints with different textures. Then, we
leverage the underlying microphone in a smartphone to
acquire the FiSe and investigate a sequence of spectral and
wavelet denoising approaches for background isolation. An
adaptive segmentation method is designed to remove the
tap noise and other entities which can be easily misinter-
preted as the target signal. Afterward, we propose a novel
taxonomy that highlights the semantic relationship between
fingerprint and audio domain, and identifies multi-level
features that fundamentally share the same concept as fin-
gerprint. Based on these insights, we design and implement
our system, SonicPrint, to facilitate secure sensing of FiSe
for user identification. Finally, a comprehensive evaluation
is performed with 31 participants on 12 surfaces across six
sessions over two months to validate the effectiveness and
inclusiveness of SonicPrint under real-world scenarios.
Summary: Our contribution in this work is four-fold:

e We explore a novel fingerprint-based biometric ap-
proach for user identification. We find that when a
user swipes his fingertip on a surface, the sonic wave
contains intrinsic fingerprint information.

o We design and implement SonicPrint, an end-to-end
biometric system to facilitate secure, accessible and
user-friendly fingerprint sensing on everyday surfaces
in practice.

e We validate the effectiveness and inclusiveness of
SonicPrint through extensive experiments with results
showing up to 98% accuracy. We conduct comprehen-
sive studies to show the resilience of SonicPrint against
fake-finger, replay, side-channel and ultrasonic attacks.

2

e We perform two case studies to demonstrate the
promising applications of SonicPrint for group authen-
tication and object identification.

2 BACKGROUND AND PRELIMINARIES

In this section, we provide a background on friction-excited
sonic waves and the rationale behind its uniqueness in
terms of human-to-material interaction. We also perform a
feasibility study to prove this concept.

Fingerprint-Induced
Sonic Detection l
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Fig. 2. FiSe arises from the friction between fingerprint and surface and
can be sensed by a conventional microphone.

2.1 Fingerprint-Induced Sonic Effect

Friction develops from two surfaces sliding against one
another irrespective of the intensity of their relative motion.
This friction leads to distinct waves and oscillations within
the interacting mediums resulting in the emission of sonic
waves to the ambient environment [11]. In daily life, there
are several instances of friction-excited sonic waves from an
interaction between sneakers on the floor or chalk on the
blackboard. In this paper, the context of sonic wave differs
from the roughness noise, which is generally random (e.g.,
rubbing of two sandpapers). Under strong contact condi-
tions, the sliding surfaces become a coupled system and
generate an intricate and often nonlinear response. Previous
studies have shown that physical parameters, including
speed and pressure, only affect the magnitude of power
spectral density to a certain extent, but not the overall dis-
tribution [12]. The roughness of the sliding surfaces impacts
the sound pressure level (SPL) as:

ASPL =20 1og10(%)m, 1)

where Ry and R; correspond to the roughness of friction
pair and m is an empirical factor varying based on the sur-
face texture. The SPL of sonic waves can be similar between
different friction pairs and thus impacts its sensing rather
than uniqueness. A person with rough fingertip would
produce a more audible sonic wave when rubbing a surface,
in contrast to a soft skin fingertip. More importantly, for
different friction pairs (e.g., finger against metal vs. finger
against plastic), the uniqueness of sonic waves arise from
the interface properties (i.e., texture) and the constitution of
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Fig. 3. A proof-of-concept (three subjects) for FiSe-based identification under the impact of (a) different fingerprint patterns; (b) fingerprint and

covered finger interaction with surface; (c) human dynamics (i.e., swiping speed and pressure).

objects (e.g., weight distribution). The surface deformation
during contact is highly minute [13] and its intensity is
inconsequential to surface roughness.

Hypothesis: When a user swipes his fingertip on any sur-
face (refer to Figure 2), the resulting friction-excited sonic
wave depends on the intrinsic fingerprint patterns, under-
lying structure of finger and opposing material. Since every
user has a unique fingerprint, the FiSe from two users
swiping on the same surface should be different. Moreover,
the low SPL of FiSe provides a strong resilience against
spoofing attacks.

2.2 A Feasibility Study
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Fig. 4. A multidimensional representation of Level | friction descriptors
from five unique fingerprints.

Proof-of-concept Setup: For studying the relationship be-
tween FiSe resulting from different fingerprints, we organize
a preliminary study with 5 subjects between age group
of 21~30 years. Each subject is asked to use their right
index finger for performing straight-downward swipes, 40
times each, on the back surface (aluminum) of a commodity
smartphone. The subjects are told to swipe naturally with-
out exerting intense pressure or speed, thereby controlling
the bias from behavioral or soft characteristics. During the

second trial, we cover the subject’s fingertip with a scotch
tape and repeat the swipe actions. In another experiment,
we ask two subjects to repeat 15 swipes with gradually
increasing pressure and speed in each trial. For the sake
of isolating environmental dependency, this study is per-
formed in a conference room (21°C) with low ambient noise.
After processing the fingerprint-induced sonic waves, we
aim to extract features that can provide a clue towards the
inherent fingerprint.

Level I Friction Descriptors: Level I characteristics of the
fingerprint depend on its macro details, i.e., the pattern
and ridge flow and can be visually perceived through
naked eye [14]. Similarly, in the audio domain, power-based
temporal features highlight the changes in signal over time
and perceptual features (e.g., pitch, loudness) have semantic
meaning to a human listener. Therefore, we select eight
features including harmonicity, pitch and spectral features
(e.g., centroid, crest, decrease, entropy, flatness) as Level I
friction descriptors. For ease of the comparison, Figure 3
illustrates the variations against average and standard devi-
ation of descriptors after normalization. Each FiSe yields a
data point on the graph and the points from multiple FiSe
by the same fingerprint exhibit a cluster.
Multi-dimensional Analysis: For identifying relevant pat-
terns in the high-dimensional features from FiSe, the Level
I friction descriptors need to be strategically converted to
a lower dimension space while preserving the distance
between the samples. T-distributed Stochastic Neighbor Em-
bedding (TSNE) [15] is a promising technique that can pre-
serve the local structure, implying that the samples which
are closer in the high-dimension would tend to be close even
after dimensionality reduction. To do this, it converts the
similarity between samples to joint probabilities and aims to
minimize the Kullback-Leibler divergence between the joint
probabilities of high-dimensional data and lower dimen-
sional embedding. We set the initialization for embedding
to be computed from Principal Component Analysis (PCA)
to retain the global structure while considering the nearest
neighbors, i.e., perplexity=30 [16], [17]. For a more detailed
representation of Figure 3(a), Figure 4 illustrates the three-
dimensional graph of descriptors.

Insights and Summary: The feasibility study reveals that (1)
every user has a unique fingerprint pattern (e.g., loop, whorl
pattern in Figure 3(a) and 4) which generates a unique FiSe
during the swipe action; (2) Figure 3(b) proves that distinc-
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Fig. 5. The overview of SonicPrint, a fingerprint-biometric based user identification system.

tiveness of FiSe is dependent on the fingerprint rather than
the overall geometry of the fingertip; (3) variation in pres-
sure and speed has a limited effect on the identifiability of
FiSe (see Figure 3(c)) However, only Level I descriptors are
insufficient to differentiate multiple subjects in presence of
contrasting behavioral traits (e.g., swiping speed, fingertip
roughness) during the sensing process. To summarize, we
prove that FiSe depends on the underlying fingerprint. For
improving the accuracy, we continue to recruit appropriate
features highlighting the intrinsic fingerprint information
(Level II and Level III) from the sonic waves. The appli-
cation of FiSe is discussed for smartphone security while
evaluating different interacting surfaces in Section 9.1.

3 THREAT MODEL

We consider a scenario where an innovate attacker, namely
Alice, intends to steal intellectual property (IP) from the
victim’s smartphone. The smartphone is integrated with a
singular defense system, i.e., SonicPrint. Unlike a traditional
attacker who primarily focus on zero-informed attacks,
Alice studies the fundamental operation of SonicPrint and
even explores the past literature for proven methods to
compromise the security of fingerprint and audio channel.
Specifically, we consider the following attack scenarios:

o Fingerprint phantom attack: Typically, Alice can either ex-
ploit the social media of victim or leverage high-resolution
cameras to remotely capture the target fingerprint. After-
ward, the fingerprint and overall finger geometry can be
utilized to create a fingerprint phantom (i.e., fake-finger).
This fake-finger is highly identical to the victim’s live-finger
and can be used to spoof the system. It is worth mentioning
that conventional fingerprint scanners can be compromised
using this stealthy attack [18].

e Replay and Side-Channel attack: Without the victim’s
knowledge, Alice places a high-sensitive microphone near
the smartphone and records the FiSe during an access
attempt. This recording is replayed to the target device
through direct FiSe matching or vibration injections by
leveraging sophisticated hardware. Studies show that this
attack can compromise the security of traditional voice
authentications within five trials [19].

o Denial-of-Service attack: If Alice is unsuccessful even
after launching aforementioned attacks, she aims to de-
crease the trust of victim towards the defense mechanism,
ultimately leading the victim to either change or turn off
the device security features. To do this, Alice can leverage
additional speakers to project white noise towards the target
while victim is performing swipe action. Instead of audible
white noise, “hidden” ultrasound signals (f = 20KHz) can be

utilized. This attack has been recently shown to compromise
the security of speech recognition systems (e.g., Siri, Alexa)
[20].

To this end, we make a few practical assumptions.
Firstly, Alice cannot position the recording microphone in
immediate proximity of victim’s smartphone (i.e., < 20cm)
considering the malicious device would be within line-of-
sight of the victim, raising his suspicion. Secondly, Alice
does not possess the advance manufacturing knowledge
or economic capability to leverage organic 3D printers for
developing biological replica of victim’s finger.

4 SONICPRINT SYSTEM OVERVIEW

By analyzing the FiSe caused by fingertip and surface in-
teraction, SonicPrint can reveal fingerprint dependent char-
acteristics in the received signal. Figure 5 illustrates four
primary modules of SonicPrint: (1) Background isolation; (2)
Friction event detection; (3) Acoustic fingerprint analysis;
(4) Ensemble classification. First, when a user swipes his
fingertip on the smartphone surface, the inbuilt microphone
is used to capture the FiSe. A series of pre-processing tech-
niques including clutter suppression, target enhancement
and ambient denoising are applied to acquire the precise
sonic wave. Once its position is verified, a multi-level rep-
resentation of acoustic fingerprint is obtained from specific
features of the target signal. Finally, the representation is
input to an ensemble classifier to precisely identify the
legitimate user.

5 FISE PROCESSING SCHEMES

In this section, we discuss the nature of friction excited sonic
waves from a coupled system consisting of fingertip and
material. When a user swipes his fingertip on the smart-
phone surface, a FiSe is generated, which can be captured
by the inbuilt microphone and can span the entire frequency
band (0-22KHz).

5.1 Pre-processing

The sonic wave is typically submerged in the dynamic
ambient noises (e.g., human talking, music) due to its low
power. Considering the diverse and known frequency bands
in the noise spectrum, it is effective to use high-order cutoff
in one-pass filters. However, this also eliminates the intrinsic
fingerprint information in the lower frequency bands. To
remove the low frequency noise from human speech and
music, we employ a high-pass filter with cutoff 2.2KHz to
remove the arbitrary clutter and recover the signal with a
frequency range from 2.2KHz to 22KHz.
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5.2 Sonic Effect Enhancement

The recent development in voice biometrics indicates that
excessive background clutter, retained during preprocess-
ing, makes it difficult to localize the phoneme [21]. Although
the human voice and background clutter can be separated
based on information content, FiSe might be perceived as
generic noise due to its low power. The spectral subtraction
[22] is a widely used method to enhance the target signal
that is degraded by additive noise. However, it also intro-
duces a distortion in the signal, referred as a musical note.
A multi-band spectral subtraction technique was proposed
as a countermeasure to deal with distortion [23]. Given
that noise does not affect the entire frequency band of FiSe
uniformly, we need to ideally subtract the appropriate noise
spectrum from each frequency bin. This would restrict any
excessive subtraction of intrinsic fingerprint information.
We acquire the clean and enhanced spectrum of FiSe in the
1th frequency band by:

[Si(k)” = [Yi(k)? = auil Dik)* i <k <eiy ()
where Y; is the power spectrum of noisy FiSe signal, D;
is the noise estimate, b; and e; are starting and ending
frequency bins. o; is an over-subtraction factor and d; is
empirically chosen for each frequency band. For calculating
i, we leverage a pre-recorded two second audio sample in
daily environment with human voices as noise estimate. We
update over-subtraction factor «; as:

€ Y: 2
::b—M) + o, (3)
2k, [Di(R)[?
where ¢, co are empirically chosen values. After nonlinear
power spectrum subtraction, the enhanced FiSe is derived
from its spectrogram. However, there still exists residual
clutter between the intervals of FiSe.

o; = Cq lOglo(

5.3 Denoising-Aware Wavelet Reconstruction

In the past decade, wavelet-based noise removal has gained
immense recognition due to two primary advantages: (1) it
provides an optimal resolution of time-series signal in both
the frequency and time domain; (2) it facilitates a precise
multi-scale analysis [24]. Therefore, we employ wavelet
denoising to eliminate the residual noise from the FiSe that
remains even after sonic effect enhancement. Using maxi-
mal overlap discrete wavelet transform (MODWT) [25], the
signal is first subjected to decomposition to acquire detail
coefficients (o) and approximation coefficients (8):

~ ()
Ozi(cJ) = Z xngi‘l,)m ﬂl(cl) = Z Tnhin otk @)

nez nez

where the levels J € Z and | € {1,2,3,..J}. We choose
the Daubechies 3 wavelet (dB3) and reduce the FiSe to 6
levels. Afterward, we apply the detail coefficient threshold
for each level to discard the ambient clutter. Finally, a
level-dependent reconstruction is employed using all the
coefficients as:

J
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Fig. 6. The spectrogram of (a) original and (b) denoised FiSe from three
swipe actions.

where g and h are rescaled discrete orthogonal functions.
The spectrogram of FiSe before and after the processing
stage is shown in Figure 6 with the signal-to-noise ratio
(SNR) significantly improved from -3 to 23 decibels.

5.4 Friction Event Detection

Considering the FiSe is caused by a user swiping his finger-
tip on the smartphone surface, there are three challenges in
tracing the target’s precise location in the measured signal:
e The duration of FiSe would vary among intra-sessions
(same user with different swipes) and inter-sessions (differ-
ent users with different swipes) and typically lies between
0.05 and 0.3 seconds.

o The traditional segmentation approaches in speech recog-
nition rely on threshold-based separation of speech vs. non-
speech frames [26] — such methods are inadequate without
optimization due to the fluctuations in sound pressure level
from roughness or speed during the swipe action (see Sec-
tion 2.1).

o The ideal signal would only comprise of the sonic wave.
However, there may be an initial tap sound (i.e., finger
colliding with the surface) or closing drag sound (i.e., finger
slipping during lifting) enclosing the FiSe. Since the ampli-
tude of the tap and drag sound are arbitrary, peak detection
methods are ineffective.

To this end, we specially design our segmentation pro-
cess (see Figure 7), to address the above challenges and
isolate the starting and ending periods of each FiSe.

i) Adaptive Detection via HMM model: The hidden Markov
Model (HMM) has proven to be an effective method for
acoustic event detection [27]. It computes the probability
of an occurrence of FiSe in every segment of the recorded
signal and only consider those with high probability as
friction events. Specifically, we first divide the recorded
sample in non-overlapping frames, where each frame is 0.01
second period. A discrete fourier transform (DFT) is applied
to each frame, after which an unbiased noise variance is
calculated based on the optimally smoothed power spectral
density estimate and spectral minima from each frequency
band [28]. Finally, a widely used log-likelihood ratio test and
HMM-based hang-over scheme [29] is used to determine
the probability of friction event. To regulate the prior SNR
[30] in log-likelihood, we define two additional parameters,
i.e., TargetToSilence (TTS) probability and SilenceToTarget
(STT) probability. For ensuring the identification of FiSe
with even low audibility, we design an adaptive technique
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Fig. 7. Roughness-aware sonic detection.

that ranks the roughness of user’s fingertip based on the
statistical analysis of the signal. In particular, the roughness
can be categorized as dry, balanced or soft by comparing
the number of detected FiSe vs. the expected FiSe based
on overall period. Depending on the predicted roughness,
the TTS and STT probabilities are optimized to retrace the
optimal friction events. In scenarios where the SPL of FiSe
is very low, our adaptive detection can raise the number of
identified events by more than 84% (counted manually).

ii) Phase-based Detection: The tap sound and drag sound
are of arbitrary characteristics and challenging to remove by
conventional statistical methods (e.g., maximum amplitude,
mean, standard deviation). Previously, phase-based detec-
tion schemes have been proposed to suppress the impact
noise [31]. The acoustic signal is first divided into non-
overlapping frames of 0.01s. Considering that there is only
one dominant pulse of magnitude a at ny in the current
frame, the signal z(n) = 0 except at n = ng. Afterward, a
DFT is applied to individual frames with the kth frequency
bin and the phase slope as:

X (k) = |X (k)[e?*®) = qe=d2mhn/N] ©6)
gt X R) X (k1) & X(R)
A0k) =t Re(X(k)- X (k—1)) X(k) IX(/f)I(’7)

where * represents the complex conjugate. Lastly, based on
the phase slope and the ng position in current frame, a
linearity index is defined as:

727’(710
~ ®)

The linearity index varies significantly between the FiSe
and residual noise. However, its magnitude for tap/drag
sound is similar to the FiSe, implying that they are of similar
phase. Therefore, we employ the last processing step to
select optimal FiSe events.

iii) Duration Verification: The sequence of occurrences
with a high magnitude linearity index differs between the

LI, (k) = AO(k) —

6

tap/drag sound and the FiSe. Based on the insights from
HMM model and the linearity index, we conduct a final
check by removing the segments whose duration does not
lie from 0.05 to 0.3 seconds. Our notable contribution is
that the aforementioned event detection is applicable for
acquiring FiSe across different smart devices and surfaces
(see Section 9.1) by making limited to no assumption with
respect to the swiping behavior of users.

6 TAXONOMY OF ACOUSTIC FINGERPRINT

The uniqueness of friction-excited sonic wave is dependent
on the texture of contact surface, i.e., the fingerprint. The tra-
ditional fingerprint recognition relies on three-level vision-
based characteristics [14]. As shown in Section 2.2, Level
I friction descriptors are not sufficient since they can only
relate to Level I optical fingerprint patterns. Therefore, we
ask a question: which features of FiSe can profoundly describe
Level II and Level III fingerprint information? To this end,
we propose a novel taxonomy (see Figure 8) that bridges
the gap between fingerprint and acoustics to select valid
features for FiSe classification.

6.1 Level Il Friction Descriptors

In the fingerprint domain, Level II features involve Galton
characteristics, also known as minutiae points (e.g., hooks
and bifurcations). These features possess a high variance
between fingerprints of different users and are actively
used in classification models. For the discrimination of
audio sources, features such as the mel-frequency cepstral
coefficients (MFCC) are essential since they can capture the
timbral characteristics. Other cepstral features generally em-
ploy the perceptual filter bank and autoregression model to
approximate the spectral envelope. Based on this semantic
relationship, for the Level II friction descriptors, we select
14 MFCC (with A and AA), 12 linear prediction cepstral
coefficients (LPCC) and 27 perceptual linear predictions
(RASTA-PLP [32]). These descriptors can provide insights
into the minutiae features of the fingerprint.

6.2 Level lll Friction Descriptors

Although being unique, Level II fingerprint features are
prone to spoofing since they could be visually perceived
through the naked eye or even in low-resolution images.
Thus, Level III fingerprint features are proposed based on
the dimensional ridge information, including width, pores
and edge contour. Similarly, short-time fourier transform
and adaptive time-frequency decomposition can reveal var-
ious physical attributes of FiSe. These features have inferior
meaning to human perception [33] and thus are difficult to
spoof. To reveal the intrinsic fingerprint from FiSe, we select
12 linear prediction coefficients (LPC), 12 linear spectral
frequencies (LSF), 26 log filter bank, spectral statistics (i.e.,
flux, kurtosis, skewness and slope) and 16 wavelet cross-
level coefficients as Level III friction descriptors. The overall
feature vector composed of 162 friction descriptors is fed to
our classification model.
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Fig. 8. A taxonomy of multi-level friction descriptors corresponding to intrinsic fingerprint.

6.3 SonicPrint Identification

Ensemble Classifiers: As the first exploratory study using
FiSe for biometrics, we employ the following prediction
models which have shown superior performance in user
identification [34], [35], [36], [37]:

o Logistic Regression (LR): It models the outcome
through logistic sigmoid function to deliver a probabil-
ity measure which is further mapped to a specific class.
We set the maximum iterations as 1000 and a cross-
entropy loss for multi-class problem.

e Support Vector Machine (SVM): It is a statistical learn-
ing method that determines an optimal hyperplane
to divide classes by maximizing the margin between
closest points. The points lying on the boundary are re-
ferred to as support vectors. We choose a linear kernel.

o Random Forest (RF): It fits specific decision tree clas-
sifiers on the sub-samples and employs averaging to
reduce overfitting. We set the estimators as 200 and use
an entropy criterion for prediction.

e Linear Discriminant Analysis (LDA): By utilizing the
Bayes’ rule and approximating class conditional densi-
ties to samples, it creates a linear decision boundary to
separate the classes. We select singular value decompo-
sition as the solver.

o Gaussian Mixture Model (GMM): It provides a para-
metric probability distribution of audio signal and re-
lated features and characterizes the weighted sum of
Gaussian components as a density function. We assume
5 components in our model.

From our empirical analysis, LDA is most suited for
FiSe classification, followed by RF and SVM. Therefore, we
assign a weight to each classifier (LR, SVM, RF, LDA, GMM)
as 1, 2,2, 3, 1, respectively. Finally, we perform hard voting
on the observations generated from the classifiers to decide
the legitimate user.

7 EVALUATION SETUP
7.1 Experimental Settings

We conduct a pilot study to validate the uniqueness of
FiSe caused by the swipe motion on a smartphone. From
reviewing the recent development in touch-based biomet-
rics [38], we observe that two swipe actions are the most
convenient and acceptable among users, as shown in Figure
9. 1THand Swipe: a user holds his phone naturally in right-
hand and uses the index finger of the same hand to swipe

on the surface. 2Hand Swipe: left-hand firmly holds the
phone while the other is used to perform the swipe. The
2Hand swipe is more robust to artifacts and allows for
precise stroke capture. To provide a better understanding
of the experimental process, we create a code to describe the
performed swipe action. The code comprises of three parts,
i.e.,, Swipe-Sensing Distance-Surface. The swipe could vary
between 1Hand and 2Hand; sensing distance differs among
lem, 7em or 1lem from inbuilt microphone; and surface
could be aluminum, glass or others. Our experimental setup
for the pilot study involves the participants to sit on a chair
in a conference room with low ambient noise. The partici-
pants are asked to perform 1Hand-7cm-aluminum swipes in a
straight-downward direction on the back of the smartphone.
Afterward, they are required to complete 2Hand-1cm-glass
swipes at the front of the smartphone. To ensure that the
obtained insights are applicable in real-world scenarios, physical
attributes (i.e., speed, pressure or roughness) of the finger are not
controlled during the swipe action, throughout the remainder of
this paper. We employ the Google Pixel 2 smartphone with a
0-22KHz range microphone to record the FiSe caused by
the swipe action. It is 14.4em(5.7inch) x 6.8cm(2.7inch)
x 1.5em(0.6inch) in size and weighs only 161.5g, which
is lightweight for easy use in daily life. It works on a
Qualcomm Snapdragon 835 with an Octa-Core processor.
The recorded signal is fed to SonicPrint for further analysis.

7.2 FiSe Collection and Partition

As the first exploration of utilizing FiSe for user identi-
fication, we recruit 31 subjects (25 males and 6 females)
within the age-group of 18-50 years in our study. None

1Hand Swipe 2Hand Swipe

c®

~

\
Reference Tape

Microphone

Fig. 9. The evaluation setup with subject performing 1Hand and 2Hand
swipe on the smartphone surface with right index finger.
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Fig. 10. The performance comparison between (a) Action1, Action2; (b) Action3; (c) Action3 (unsupervised).

of the subjects have any damage to their fingerprint. For
both the experiments involving 1Hand and 2Hand swipes,
every subject performs six trials each. In each trial, the
subject swipes at the specific position 30 times continuously.
A 15min break separates every two consecutive trials to
ensure non-uniform speed and pressure during swipes.
Furthermore, the six trials for each experiment are spread
across three weeks. A trial consists of 1min recording for
each person. In total, every subject performs 180 1Hand-
7em-aluminum and 180 2Hand-1cm-glass swipe actions. The
generated FiSe is recorded by the inbuilt microphone (sam-
pling rate of 44.1KHz) and later fed to SomicPrint. After
denoising and segmentation, a total of 4099 1Hand swipes
(~130 per participant) and 4405 2Hand swipes (~140 per
participant) are selected for training and testing. A 10-fold
stratified cross-validation approach is applied to normal-
ized features during user identification. The reason behind
choosing stratified approach relates to the bias in classifica-
tion models. During prediction, every instance is weighted
equally, implying that a few over-represented classes can
dominate the evaluation metrics. Thus, a stratified model
ensures that each fold in cross-validation is representative of
the whole dataset, thereby optimizing the bias and variance
[39]. We employ other cross-validation and direct matching
algorithms, in Section 9, to evaluate the inclusiveness of
SonicPrint in real-world scenarios.

Evaluation Metrics: We introduce balanced accuracy (BAC),
F-score, equal error rate (EER) and receiver operating char-
acteristics (ROC) curve [40], [41] as metrics in our evaluation
model. They are insensitive to class distribution which is
critical for identification schemes. We also consider two
additional metrics, i.e., Precision and Recall in Section 9 for
robustness against unbalanced dataset.

7.3 SonicPrint Usability & Social Acceptance

SonicPrint requires the users to naturally swipe on their
smartphone cover to acquire the unique FiSe. To assess the
practicality and acceptance of SonicPrint in the real-world,
we surveyed the 31 participants recruited in our pilot study.
Of all the 31 participants, 80% are male and 20% are female.
The participants are requested to answer multiple-choice
questions belonging to the following two categories:

Smartphone Usability: We first ask the participants about
the duration they operate smartphone in daily life. 41% of
the participants spend 3 to 5 hours on their smartphone
while 32% spend less than 2 hours. Within the spent time,

83% of the respondents primarily commit to communication
(call or text) while 61% allocate the time on social media.
On a per day basis, 54% of the participants unlocks their
smartphone for more than 30 times. It is worth noting
that among the unlock attempts by participants, around
60% are either performed multiple times or resorted to the
password mechanism due to the insensitivity of fingerprint
mechanism.
Security Awareness: We inquire the participants about their
preferred biometric platform on the smartphone and their
opinion on its security. 87% of the participants opt for
fingerprint recognition while others evenly preferred the
voice, face and password-based mechanism. From the total
31 participants, 64% think that fingerprint biometrics is not
secure, 29% mentioned were unsure and 6% believed in
its resilience against spoofing attacks. After informing them
about the security risks, the perception of majority of partic-
ipants shifted considerably towards taking cautionary steps
to mitigate the threats. Only one participant still believed
that the current state of fingerprint biometrics is reliable.
After completing the experiments, we ask the partici-
pants a few questions regarding their experience with our
system. 71% of them preferred to perform 2Hand swipes
on the front surface of the smartphone, while 29% preferred
1Hand swipes on the back cover. On a scale of 1 to 10, all the
participants are requested to rate the comfortability while
performing multiple swipe actions. We record an average
score of 9.35, validating the ease-of-use of SonicPrint. Fur-
thermore, we employ a 4-point Likert scale (ranging from
Strongly Disagree to Strong Agree) [42]. This scale deter-
mines the participant’s willingness to adopt SonicPrint in
daily life for unlocking a smartphone or accessing protected
information. 80% of the participants answered with a score
of 4 points, while the rest gave a score of 3 points. These
results show high acceptance of SonicPrint among subjects,
especially when made aware of the threats in traditional
fingerprint scanners.

8 ACCURACY & RELIABILITY STUDY

As a potential breakthrough technology, it is critical to
evaluate the performance and reliability of SonicPrint. Our
smartphone-based pilot study comprises user identification
using FiSe obtained from two actions: (1) Actionl: 1Hand-
7em-aluminum swipes; (2) Action2: 2Hand-1cm-glass swipes.
For each action, we make a comparison of evaluation
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metrics by increasing the number of swipes per sample
performed by the user.

i) Actionl performance: After performing 10-fold stratified
cross-validation on 4099 samples, the observed BAC and F-
score are shown in Figure 8(a). The number of inputs, i.e.,
swipes per sample is increased from one to three and the
variation in performance is recorded. The BAC for 1,2 and 3
inputs is 82.3%, 87.3% and 88.2% while the F-score is 84.8%,
89.1% and 90.2% respectively. From ROC curve, the area-
under-curve (AUC) is observed to be 85.3%, 89% and 88.6%
as swipes per sample increases.

ii) Action2 performance: We report the BAC and F-score
for 10-fold stratified cross-validation on 4405 samples in
Figure 8(a). The BAC for 1, 2 and 3 inputs is 84.15%, 88.9%
and 89.2% while the F-score is observed as 86.1%, 90.6%
and 90.9% respectively. We compute AUC as 85.8%, 88.2%
and 88.7% for increasing inputs. For Action1 and Action2,
the performance improves by augmenting more swipes per
access attempt.

Performance Reliability: To ensure that the observed per-
formance is not dependent on the size of training and testing
dataset, we vary the number the splits in K-fold (from 3
to 10) and note the results. For both Actionl and Action2,
the BAC and F-score remain stable, within a margin of
+2%, exhibiting the reliability of SonicPrint even under less
amount of training samples.

Insights: While the previous results demonstrate the
uniqueness of FiSe as a biometric trait, they also provide
vital clues to improve SonicPrint. One reason for the lower
performance of 1Hand (Action1) to 2Hand (Action2) swipes
is due to its sensing distance from the microphone. A close
proximity of swipe action with microphone ensures high
SNR and allows for more precise capture of the FiSe. The
2Hand swipes provide a superior control to the users to
ensure that their fingerprint properly interacts with the
opposing surface. A rich textural material facilitates strong
coupling between the fingerprint and surface to produce a
more distinct FiSe. Since the glass material in Action2 is a
smooth surface, the performance can be enhanced by select-
ing a more suitable material to interact with the fingerprint.
iii) Action3 performance: Based on these insights, we con-
duct another experiment, Action3, to analyze the SonicPrint
performance under ideal conditions. We place the smart-
phone in a common protective case made from synthetic
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leather and ask the 31 subjects to perform 2Hand-Icm-
leather swipes. We collect 4572 FiSe during swipe events
and perform 10-fold stratified cross-validation. The BAC
and F-score for one swipe per sample is 98.3% and 98.4%,
respectively. Figure 8(b) shows the ROC curve where the
observed EER and AUC are 0.03 and 97.5%. We examine the
performance reliability by changing the splits in K-fold from
3 to 10, with results showing a +1% variation in scores.
Alien Fingerprint: To examine the vulnerability of Son-
icPrint against alien fingerprints (i.e., samples not trained
in advance), we randomly choose 16 subjects and train the
model using their 2Hand-1cm-leather swipes. The remaining
15 subjects are used for testing in Figure 8(c). Our system can
successfully reject the alien fingerprints using the threshold
value of classification score. The results prove our insights
and confirm that the users can be precisely recognized by
SonicPrint.

Identification vs Recognition: A conventional fingerprint
scanner in smart devices grant access to a user by matching
his input to a pre-trained template. This task is similar to
binary classification in authentication problems [43]. Our
previous results show the capability of SonicPrint to perform
a more challenging task of user identification (in other
words, multi-class classification) which is desirable in the
IoT environment (e.g., smarthome). Nevertheless, we also
evaluated Actionl and Action2 performance for user recog-
nition (i.e., each subject is compared against others, in a
one-against-one fashion) to observe comparable evaluation
metrics (+2%). Furthermore, we vary the number of ran-
domly selected subjects from 2 to 30 and note the BAC
score in Figure 11. As the number of subjects increase, the
performance decreases. An interesting observation is that
after 15 subjects, our model learns to effectively determine
features that can accurately differentiate the subject-specific
FiSe. A comprehensive evaluation of relative entropy in FiSe
can be a lucrative venue for future work.

9 INCLUSIVENESS STUDY

To provide further insights about SonicPrint capability for
user identification, we consider multiple scenarios that
might contrast during real-world deployment. In the follow-
ing, we recruit 5 subjects (vary between the experiments) to
perform swipes actions using their right index finger. We
evaluate the base performance by considering one swipe
per sample through 10-fold cross validation.

9.1 Surface Exploration

We envision that SonicPrint can be integrated with not only
the smart devices but also common materials or commodi-
ties found in the daily environment. To achieve this, it is
vital to evaluate a wide variety of interacting surfaces and
their impact on the uniqueness and SPL of FiSe. Each of
the 5 subjects are asked to perform 150 swipe actions on
10 diverse materials, i.e., paper, foam, coarse leather, poly-
carbonate, silicon, engraved plastic, smooth plastic, rubber,
fiber, smooth leather. The BAC, F-score, precision and recall
are illustrated in Figure 12.

Insights: A high textural surface ensures a more robust
coupling with the fingerprint during the swipe action. Fur-
thermore, a smooth surface has lower roughness measure
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leading to low SPL (see Section 2.1), raising the challenge
for preprocessing module to differentiate between FiSe and
generic noise. Either a high sensitive microphone or shorter
sensing distance can elevate the system performance; FiSe
is the first promising biometric trait which can be accessible
and adoptable across wide range of materials with satisfac-
tory texture.

9.2 Multi-Fingerprint Sensitivity

To achieve high acceptance among users, it is vital for Son-
icPrint to possess higher degree of freedom than traditional
fingerprint biometrics. Furthermore, a user may prefer for
SonicPrint to be capable in recognizing FiSe generated from
multiple fingertips during a single access attempt. We ask
the subjects to vary the number of fingers (from one to three)
while performing 150 2Hand-1cm-glass swipe actions.
Insights: Our initial assumption states that cohesively using
multiple fingers, with individual unique fingerprint, would
increase the randomness of sonic waves. However, Table
1 demonstrates a unique way to increase the entropy of
biometric trait. It is worth mentioning that no modifications
were required for SomicPrint to facilitate this experiment;
whereas, popular biometrics such as face or fingerprint
would require either wider sensing region or advanced
processing algorithms. Building on this multi-fingerprint
approach, we aim to further evaluate its robustness against
real-world challenges (e.g., fingertips with different mois-
ture states or motion patterns) in our future work.

9.3 Skin Condition

Previous studies demonstrate that elderly users suffer from
statistically lower finger friction coefficient, moisture and
elasticity [44] as compared to younger age group. Equation
1 states the relation between the roughness of surface to
the SPL of sonic wave, making it crucial to confirm that
FiSe from diverse age groups, with different skin conditions,

TABLE 1
SonicPrint adaptability to multi-fingerprint swipe actions.

One Finger ~ Two Finger  Three Finger
BAC 87.5% 93% 97.6%
F-score 86.9% 93% 97.6%
Precision 86.7% 94% 97.7%
Recall 87.5% 93% 97.6%
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Fig. 13. Evaluation among age groups (years). The subject in each
group possess different skin condition in terms of roughness, elasticity.

can be recognized by our system. We randomly choose
5 subjects from different age group (i.e., 18~60 years) to
perform 150 2Hand-1cm-glass swipes.

Insights: Considering elderly users have dry fingertips,
their FiSe recordings comprised of high SPL making it easier
for SonicPrint to trace the sonic wave in overall measured
signal. This is evident from the stable performance observed
among different age groups in Figure 13. The lower perfor-
mance for age group of 20-30 years is due to the subject us-
ing lotion on their fingertip prior to the experiment (thereby
leading to highly smooth fingertip). We further discuss the
potential improvements in Section 12.

9.4 Swipe Stability

In a real-world setup, it is unlikely that the swipe action
performed by user is regulated and monitored as in our pilot
study. It would be ideal if FiSe is sufficiently resilient to hu-
man artifacts. To this end, the subjects perform 200 1Hand-
7em-aluminum and 200 2Hand-1cm-glass on the smartphone.
During the later 100 swipes in each experiment, the subjects
are periodically pushed on their back body at random
intervals. The intensity of these artifacts are controlled to
prevent huge disruption in the entire body (e.g., pushing
with both hands forcefully) but are sufficient to influence
the upper body posture of the subject. The results are shown
in Figure 14.
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Insights: Human artifacts have limited influence on the per-
formance of SonicPrint. Intuitively, the 2Hand swipes should
have minimal impact since holding the smartphone with
one-hand and using the opposing finger to swipe ensures
a more continuous flow. However, the influence of artifacts
on 2Hand is more severe when compared to 1Hand due to
the variations in magnitude of artifacts within experiment.
Nevertheless, these findings are valuable as we can envision
similar results for users with movement disorders (e.g.,
parkinson).

9.5 Device Temperature

In traditional biometrics (e.g., fingerprint, face, voice), de-
vice temperature is rarely considered as a factor of evalua-
tion. Yet, recent studies demonstrate the adverse influence of
temperature on embedded sensors (e.g., stability of cameras
[45]). SonicPrint relies on conventional microphones in smart
devices to sense the FiSe which may be influenced from
temperature. For evaluation, the subjects are required to
individually conduct 600 2Hand-1cm-glass swipes. After ev-
ery 150 swipes, we increase the temperature of smartphone
by using an off-the-shelf hot-air blower for 15, 30 and 45
seconds duration.

Insights: Figure 15 shows that high temperature has an
adverse effect on the sensitivity of in-built microphone,
leading to decrease in system performance. These results
matches with the known fact that MEMS microphone expe-
rience a loss of sensitivity and frequency response while
suffering from distortion above the operating limit [46],
[47]. Nevertheless, the FiSe signals can still be recognized if
SonicPrint is sufficiently trained to tackle adverse conditions
without requiring modifications in the sensing hardware. A
more comprehensive study on the effect of temperature on
material surface and FiSe is retained for future work.

10 CASE STUuDY
10.1 Group Authentication

Over the last decade, biometric technologies has trans-
formed the user security by analyzing diverse physiological
and behavioral traits via unique frameworks, e.g., mul-
timodel, unobtrusive and continuous authentication [48].
Yet, one problem remains to be addressed: conventional
biometrics provides a one-to-one connection between the
measured signal and user’s identity. For instance, if users
belonging to a group (e.g., family, colleagues) needs be
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authenticated at a single timestep (e.g., border verification in
airports), multiple sensors are required with increased reso-
lution and field-of-view. Moreover, the software algorithms
need to individually assess each biometric trait making the
computational time complexity similar between identifying
the group together vs. each person separately. Considering
the promising results shown by SonicPrint using multi-
fingerprint approach (see Section 9.2), it can lead to a
breakthrough if FiSe from different groups of users can be
identified without any change in system architecture.

To this end, we recruit 3 subjects (namely, Alice, Bob,
Jack) and organize them into four groups (Alice-Bob, Bob-
Jack, Alice-Jack and Alice-Bob-Jack). Subjects in the same
group are requested to sit next to each other and place
their right index finger on a common blank paper. The
smartphone measures the FiSe resulting from each group
while they concurrently perform 150 2Hand-2cm swipes.
By using a visual cue (i.e., pointer traversing across the
smartphone screen at fixed speed), the swipes of users are
controlled to have consistent start and end time. The results
of identifying a group in comparison to others are illustrated
in Figure 16. The average BAC is 96.3%. SonicPrint can
not only perform accurate group authentication but is also
robust to the number of users in a group.

10.2 Object Identification

The uniqueness of FiSe relates to the fingerprint minutiae,
surface texture and the underlying composition of human
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Fig. 17. SonicPrint performance to identify interacting object based on
swipe actions.

fingertip. Its dependency on surface texture raises an in-
teresting question whether SonicPrint can be applied for
object identification. Recently, object tagging without Near
Field Communication (NFC) tags have received immense
attention for robotics [49] and mobile applications [50].

Building on this, we ask subjects to perform swipe
actions on six different types of objects (i.e., paper, Bose
headphone, Apple Watch Series 4, Google voice assistant
(Echo), Logitech mouse and Google Pixel 2 smartphone).
An overall of 3109 sonic waves are processed and analyzed
for this experiment. For classification, instead of assigning
unique class label to each subject, swipes performed on each
object would have same class label irrespective of source
fingerprint. Figure 17 demonstrates a high performance
with precision, recall, F-score and BAC of 97.9%, 97.1%,
97.6% and 97.4% respectively. We envision that SonicPrint
ability to sense the nature and type of object that users
are touching can have revolutionary impact on accessibility
services.

11 VULNERABILITY STUDY

In this section, we examine the security of SonicPrint against
the sophisticated attacks that are known to compromise
the security of traditional fingerprint scanners and voice
recognition systems.

11.1

We assume that Alice has access to the fingerprint and other
geometrical characteristics (e.g., width, thickness) of left
index finger of a legitimate user. Based on this information,
she aims to build a replica of the victim’s finger and breach
the biometric security. There are two methods to achieve
this goal. First, she can utilize an advanced 3D printer to
replicate the precise texture patterns of a fingerprint on a
finger model. Yet, these printers are economically infeasi-
ble and often inaccessible to general public. Furthermore,
considering the extensive detail of fingerprint, simulating
the minutiae characteristics is computationally expensive,
where the complexity increases exponentially with the level
of features. Second, Alice can utilize materials commonly

Fingerprint Phantom Attack
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Fig. 18. (a) Gelatin fake fingers with multi-level fingerprint textures; (b)
vibration injections via audio transducer.

found in the household to build a fake-finger. Considering
these materials have shown sufficient capability to spoof the
fingerprint scanners [51], this is the most plausible attack
scenario. Alice utilizes gelatin which can most closely relate
the texture of live finger [2] and can even spoof capacitive
fingerprint scanners [1]. We recruit 5 subjects with fingers of
different sizes and perform the following steps:

e We ensure that the entire finger of each subject is covered
by multiple layers (5 to 8) of latex material.

o Between each successive layer, we wait for 10 minutes to
lose the moisture; the finger is kept still so that no pressure
marks or creases occur on the coating.

® Once the latex coating becomes firm, we gently enclose it
with baking powder as we remove the latex from the finger.
The baking powder do not harm the target fingerprint since
it is placed on the outside while the fingerprint features are
on the inside of the coating.

e We prepare a mixture of one part gelatin, glycerin and
water and use a conventional microwave to heat the mix-
ture. Finally, we pour the mixture inside the recovered
latex coating and leave it to dry for 24 hours. The latex
coating is then discarded to obtain the gelatin fake-finger,
as illustrated in Figure 18.

We ask each subject to use their live left index finger and
perform 100 2Hand-7cm-aluminum and 100 2Hand-1cm-glass
swipes on the smartphone. Afterward, we repeat the process
by informing subjects to utilize their fake-fingers to com-
plete swipe actions. We train the SonicPrint on recordings
from live fingers and test fake-fingers during identification.
For the fake-finger recordings, we observe that our pre-
processing module discards 300 (out of 500) aluminum and
450 (out of 500) glass FiSe. Out of the remaining, only
32 (6.4%) aluminum and 21 (4.2%) glass FiSe are misclas-
sified as live fingers. These results provides a promising
start regarding the sensitivity of our background isolation
module to identify the live sonic wave and the resilience of
SonicPrint against fake-fingers.

11.2 Replay and Side-Channel Attack

We assume that Alice knows the underlying mechanism of
SonicPrint to sense the sonic waves for user identification.
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Through a high-resolution camera, Alice can acquire the
victim's fingerprint from a distance of 2m [52]; however, no
FiSe can be obtained from a similar distance due to its low
SPL. Therefore, we envision an unrealistic scenario where
she leverages a high-sensitive microphone (i.e., Fifine-K670)
and positions it at very close proximity of 20cm and 30cm
facing the target smart device. The microphone captures the
FiSe during an access attempt by a legitimate user.

Attack via Microphone: the recording is replayed to the
inbuilt microphone of target smartphone by direct FiSe
replay. Overall, 4 subjects conduct 500 2Hand-7cm-aluminum
swipes on Google Pixel 2 and the inbuilt and secondary mi-
crophone concurrently records the FiSe. For attack through
a direct transfer, merely 4.8% and 3.2% of replayed FiSe
match with the original recording, even at a close distance
of 20cm and 30cm respectively. During the sensing phase,
all microphones pick up two sounds, “on-axis” from the
direction they are designed to pick up and “off-axis” from
all other directions which cannot be modelled and follows
behavior of microphone. This can have different effects
such as change in frequency response, relative volume or
character of sound, especially in dynamic environments
[53]. The original FiSe is of low sound pressure level and our
preprocessing module is designed to be extensive during
filtering (wavelet denoising) and selecting friction events
(Hidden-Markov Model) from overall signal. During the
experiments, we observed majority of replay samples to not
pass through the preprocessing module of our system.
Attack via Vibration Channel: we consider a scenario
where Alice attempts to forge the swipe action of legiti-
mate user as vibration signals for identification. When the
previously recorded audio signal is passed through the coil
of transducer, a dynamic electromagnetic field is generated
that makes the actuator vibrate the smartphone (see Figure
18). The intensity of these vibrations are controlled through
an amplifier to drive its amplitude closer to that of sonic
wave. Although these vibrations are propagated from a very
close distance (i.e., top of smartphone), all are rejected by
SonicPrint, making side-channels attacks via hidden trans-
mitters ineffective.

11.3 Hidden Denial-of-Service Attack

Upon realizing the unsuccessful attempts to compromise
SonicPrint via fake-finger, replay and side-channel attack,
Alice aims to manipulate victim’s trust in the biometric
system by leveraging inaudible noise (i.e., audio signal with
frequency of 20KHz). Specifically, while victim is accessing
his smart device through swipe action, Alice would project
inaudible noise towards the in-built microphone. She en-
visions that FiSe would suffer from same deterioration in
information content as human voice under the influence of
inaudible noise [54]. To evaluate this, we ask 5 subjects to
perform 150 2Hand-1cm-glass swipes each on Google pixel 2.
During the sensing process, we project a tone with 20KHz
frequency of highest volume supported by the speakers
in IPhone 6S smartphone towards the microphone. The
recorded FiSe is fed to the background isolation module of
SonicPrint for further processing. From Figure 19, the noise
at 20KHz can be clearly observed in the measured signal.
However, the MODWT wavelet denoising algorithm in the
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Fig. 19. The time domain representation and spectrogram of (a) original
and (b) denoised FiSe from three swipe actions.

background isolation module is robust to inaudible noise
and provides a more finer and regularized discretization
of the signal [55]. The traces of noise of lower frequency
between concurrent FiSe can be further discarded via the
friction event detection algorithm (see Section 5.4). While
the observed results are favorable, this experiment can be
improved by considering higher frequency noise (i.e., above
25/40/60KHz) thus serving as an valuable exploration op-
portunity for mobile security research.

12 DiscussIiON

Microphone Sensitivity: SonicPrint leverages the low-cost
microphone of smartphone for FiSe acquisition. Although
our system shows a satisfactory performance under ideal
conditions, the overall results can be significantly improved
by adopting high sensitive microphones. These micro-
phones can precisely detect FiSe from even swipe actions on
smooth surfaces in a noisy environment. Users would not be
required to perform the swipe as close to the microphone,
increasing the level of freedom and user acceptance.
Accuracy and Improvements: SonicPrint achieves 84% and
98% identification rates with a single trial on standard and
high-texture smartphone surface, respectively. This is com-
parable to recent low-cost solutions using vibrations [56],
[57], gait patterns [58] and passive sensing [59] for authen-
tication. Yet, the most significant contribution of SonicPrint
is its adoptability across diverse surface materials (refer to
Section 9.1) which is not supported by existing solutions.
Our proposed approach can also be used as secondary bio-
metrics; improvements in microphone frequency response
and deep learning approaches can be considered for our
future exploration.

System Considerations: As a starting point, SonicPrint is
a promising biometric with high adoptability and anti-
spoofing capabilities. However, a practical deployment in
the real-world requires reflection on following criteria: (1)
Privacy: The audible nature of FiSe makes it prone to theft
via a conventional recording device. For a countermeasure,
the user can be asked to perform a specialized gesture
(e.g., zig-zag or star pattern) during the training process.
These gestures are uncommon in normal user behavior,
thereby increasing the difficulty for an attacker to acquire
the target FiSe outside the recognition period. (2) Power
consumption: The power consumption primarily depends on
the sensing and processing algorithms used for SonicPrint
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implementation. Both of the sensing and processing are
light and can be managed by a digital signal processor
(DSP). For instance, a 5.8mW 48-kHz recording supported
by TLV320AIC3212 AudioCodec [60] and a TMS320C553x
DSP [61] with 64KB to 320KB memory and 0.15 mW/mHz
active power at 1.05 V and 0.15 mW standby power are
sufficient for standard audio filtering. In case a CPU is
employed, since each authentication takes less than 2 sec-
onds, the power consumption is limited and can be further
decreased by using co-processors [62]. The use of statistical
classifiers would limit the memory consumption compared
to Tensorflow Lite (0.85W on EdgeTPU [63]). Given that
our solution is locally-hosted and do not require heavy
computational resources, it can be more energy-efficient
than voice assistants such as Alexa, Siri which consumes
less than 2W [64] on standby despite actively listening. In
case DSP has limited memory for continuous listening, a
touch trigger [65] can be employed to activate FiSe record-
ing, thereby limiting battery usage in smart devices. (3)
Recognition time: By employing computationally inexpensive
algorithms, SonicPrint can identify a user within 2 second
period, further facilitating its deployment in smart devices.
User’s Perspective: In a real-world application, SonicPrint,
at its current capability, would require users to swipe up to
60 times during the training phase (1 minute duration) and
1-3 swipes during the login attempt. There are two consid-
erations: (1) The widely-used biometrics (e.g., fingerprint,
face) also require users to follow special instructions during
the training process, i.e., input biometric trait from multiple
orientations and locations which can consume more than
a few minutes for non-technical audience. (2) Instead of
performing multiple swipes during login attempt, users can
perform a single swipe with multiple fingers having higher
precision during identification (as shown in Section 9.2).

13 RELATED WORK

Touch-based Biometrics: Touch-based implicit authentica-
tion relies on the unconstrained movement patterns of users
when they interact with their smartphone. The location
of finger taps could be inferred from the motion sensors
[66], [67]. Based on this insight, the touch dynamics was
explored as a soft biometric trait for user authentication
[68], [69]. Different parameters such as the rhythm, strength,
angle of applied force [70] or the size and axis length of
finger touch area [71] can depict the user’s individuality.
Despite the enhancements in security [72], [73], [74], it was
shown that mimicry attacks have a bypass rate of 86%,
even with partial knowledge of the underlying features of
touch biometric [75]. Recently, researchers have employed
induced body electric potentials (iBEP) or body guided
communications as a new biometric [76], [77]. However, it
requires the user to continuously wear a token device and
can be spoofed through injection attacks. Our method relies
on the uniqueness of fingerprint and cannot be spoofed via
mimicry or side-channel attacks.

Acoustic Sensing: In 2011, researchers proposed that the
acoustic signatures caused by an object impacting with
a screen surface could identify its type (i.e., fingernail,
knuckle, tip) [78]. Afterward, the domain of acoustics-based
touch interaction was enhanced by monitoring continuous
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sound via structure-borne sound propagation [79] for in-
ferring the finger tapping and movements of the user [80].
When a vibration motor excites a surface, the presence of
devices [81] or user-specific gestures [56] can be sensed
by the inertial sensors. However, these approaches have
limited accessibility due to the requirement of additional
vibration transmitters and receivers and more importantly,
are vulnerable to the Denial-of-Service (DoS) attacks. The
latest advancement in the field of photoacoustics [82], [83]
provides multidimensional insight to human palm while
researchers have shown to utilize wireless signals for ex-
tracting precise audio signals for authentication [84], [85].
Yet, these systems cannot support adoptability in smart
devices. A recent study captures the finger sound caused by
thumb rubbing the finger for gesture recognition [86], yet
requires the user to wear a ring during the sensing process.
To the best of our knowledge, we provide the first study on
exploring the intrinsic fingerprint information in friction-
excited sonic waves for secure user identification.

14 CONCLUSION

Existing fingerprint biometric is vulnerable to spoofing at-
tacks (e.g., fake-fingers) and cannot be adopted in upcoming
smart devices due to hardware constraints. In this paper, we
introduce a new dimension of fingerprint sensing using the
friction-excited sonic wave caused by a fingerprint to sur-
face interaction. We develop SonicPrint that utilizes the FiSe
from a user swiping his fingertip on everyday smart devices
for identification. The system is adoptable, user-friendly
and difficult to counterfeit with an identification accuracy
up to 98%. We also show the inclusiveness of SonicPrint
under human artifacts, skin conditions, multi-fingerprint
and device temperature. Furthermore, SonicPrint shows
immense potential for applications in group authentication
and object identification. In the future, we aim to consider
users having damaged fingerprints while exploring high-
sensitive microphones with ultrasonic range to improve the
system accuracy.
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