
Renewable Energy-Aware Big Data Analytics in
Geo-Distributed Data Centers with

Reinforcement Learning
Chenhan Xu , Kun Wang , Senior Member, IEEE, Peng Li ,Member, IEEE,

Rui Xia, Song Guo , Senior Member, IEEE, and Minyi Guo, Fellow, IEEE

Abstract—In the age of big data, companies tend to deploy their services in data centers rather than their own servers. The demands

of big data analytics grow significantly, which leads to an extremely high electricity consumption at data centers. In this paper, we

investigate the cost minimization problem of big data analytics on geo-distributed data centers connected to renewable energy sources

with unpredictable capacity. To solve this problem, we propose a Reinforcement Learning (RL) based job scheduling algorithm by

combining RL with neural network (NN). Moreover, two techniques are developed to enhance the performance of our proposal.

Specifically, Random Pool Sampling (RPS) is proposed to retrain the NN via accumulated training data, and a novel Unidirectional

Bridge Network (UBN) structure is designed for further enhancing the training speed by using the historical knowledge stored in the

trained NN. Experiment results on real Google cluster traces and electricity price from Energy Information Administration show that our

approach is able to reduce the data centers’ cost significantly compared with other benchmark algorithms.

Index Terms—Big data, load balancing, reinforcement learning, data center

Ç

1 INTRODUCTION

INTERNET services, such as web-mail, distance education,
searching and online chatting, have gained great popular-

ity in recent years. In order to achieve global service coverage
and high availability, service providers have utilized multi-
ple geo-distributed data centers to conduct streaming analyt-
ics on big data continuously collected from users [1], [2].
However, running such kinds of big data jobs on data centers
consumes overwhelming amount of energy, which causes a
serious burden to the environment and the economy. The
statistics report [3] shows that the energy consumed by data

centers accounts for 1.3 percent of total energy consumption
of the world in 2010.

There have been emphasizing research efforts on energy
issues of geo-distributed data centers. Earlier studies focus
on energy efficiency by employing various energy-saving
techniques. e.g., dynamic CPU voltage adjusting [4] and
resizing [5]. Recent works [6], [7], [8] start to exploit renew-
able energy, such as wind and solar, to power data centers
so that the energy consumption from traditional power grid
can be significantly reduced. However, how to use renew-
able energy to decrease the cost of big data analytics is still
an open challenge [9], [10], [11].

In this paper, we investigate a renewable energy-aware job
scheduling issue in geo-distributed data centers based on
streaming big data analytics. Particularly, we take a set of
steaming big data jobs into consideration, each of which runs
on a cluster of virtual machines accommodated in several
geo-distributed data centers connected to both traditional
power grid and renewable energy sourceswith unpredictable
capacity [12]. When more renewable energy has been gene-
rated at a data center due to favorable weather conditions,
migrating big data jobs to this data center could decrease
energy consumption from power grid under an incurred
migration overhead. This cost might be high when migration
meets network traffic congestion. Our proposal is designed
for minimizing the total cost of energy consumption from
grid and job migration without any knowledge of future
renewable energy generation. To solve this challenging prob-
lem, we propose a novel job scheduling algorithm based on
reinforcement learning (RL) [13] that can approximate the
optimal solution by iteratively learning the feedback fromhis-
torical job scheduling decisions (i.e., job locations in different
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time intervals), which are also referred to as actions. The
learning process of RL consists of a sequence of actions and
the corresponding rewards. In each iteration, RL maintains a
value function to evaluate the expected effect of taking differ-
ent actions. When the action selected by value function is
applied, RL observes the state that appears thereafter, e.g., the
current generated renewable energy and the data center load,
the reward associatedwith this state that can be used to refine
its value function. Although RL is a promising approach, the
following challenges need to be addressed on how to quickly
approximate the optimal solution for streaming big data
analytics.

� Value function design. Designing a value function to
evaluate different job scheduling actions is difficult
because the system state in our problem depends on
many factors, such as generated renewable energy
(weather condition), resource utilization, and network
congestion. Furthermore, since there is no priori
knowledge of future renewable energy generation, it
is difficult to evaluate the cost saving of current
scheduling decision.

� Sub-optimal and slow convergence. The traditional RL
learns knowledge from the rewards of previous
scheduling decisions using temporal differences [15].
Our experiments on real data sets reveal that this
method fails to guarantee quick convergence to the
optimal solution that can be obtainedwhen the knowl-
edge of future dynamics is available.

Different from existing work striving for value function
design, we propose to use neural network (NN) to evaluate
different job scheduling actions thatwill exhibit high accuracy
as shown later in our experiments. NN is composed of a num-
ber of interconnected processing elements, also called neu-
rons, organized into several layers. Given the current state as
input, it can learn how to calculate an output (i.e., expected
cost) based on a set of training data. Due to the strong learning
capability of NN, we integrate it into the RL framework, such
that we can adjust job scheduling to approximate the optimal
solution with minimum cost [16]. To further improve training
accuracy, we propose a novel random pool sampling (RPS)
method to improve training data quality by caching historical
data and periodically retrain the NN based on them. A unidi-
rectional bridge network (UBN) structure is designed to reuse
some neurons of NN constructed in previous iterations, such
that the training process can be accelerated. We summarize
the contributions in this paper as follows:

� We are the first to study the streaming big data ana-
lytics with renewable energy by formulating a big
data job scheduling problem in geo-distributed data
centers. Our proposal is designed for minimizing the
total cost of energy consumption from traditional
power grid and job migration among data centers.

� We develop an RL-based algorithm to deal with the
job scheduling issue, without any assumption of
future renewable energy generation and jobmigration
cost. NN is applied to simplify the value function
design in the traditional RL algorithm. This paper is
the first to embed NN into RL for its value function
design in the studied problem.

� To improve the performance of our proposed
scheme, two techniques are developed. In order to
increase the accuracy of NN, we propose an RPS
approach that periodically retrains the NN using
accumulated training data with improved quality.
We also design a novel unidirectional bridge net-
work (UBN) structure to further enhance the training
speed of our proposed algorithm by using historical
knowledge stored in the trained NN. The experimen-
tal results show that these techniques can improve
the cost saving and convergence speed by 20 and 200
percent, respectively.

� Extensive simulations are performed based on var-
ious data traces of real world workload, renewable
energy, and grid electricity price for assessing the
performance of our proposed algorithm. Our
proposal has superior performance than bench-
mark approaches according to numerical results
analysis.

We organize the rest of this paper as follows. Section 2
elaborates the system model and problem formulation. An
RL based job scheduling algorithm is presented in Section 3.
In Section 4, we enhance our proposed algorithm using a
random pool sampling approach and a new NN structure.
The results of extensive experiments are shown in Section 5.
Section 6 surveys the related work. Section 7 gives the con-
clusion of our paper finally.

2 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set D ¼ fd1; d2; . . . dmg of data centers with
renewable energy sources distributed in different geograph-
ical regions, which is shown in Fig. 1. Similar with the
model adopted in [17], streaming data from users first
arrive at a number of gateways, which then forward them
to different data centers. Particularly, we consider a set
J ¼ fj1; j2; . . . ; jng of big data jobs, each of which runs on a
cluster of virtual machines. The data arriving rate of job jk is
denoted by ck that would fluctuate over time. When a large
amount of data arrives, the increased resource utilization of
virtual clusters will lead to higher energy consumption.

Based on this observation, we consider a discrete-time
power model of T time intervals, in which the total energy
consumption of data center di at time interval t can be calcu-
lated by

ui;t ¼
Z t

t0

" X
di2D

PiðtÞ
#
dt; (1)

Fig. 1. System model.
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where

PiðtÞ ¼ pidlei þ pfulli � pidlei

� ��
2rciðtÞ � rciðtÞ1:4

�
: (2)

In (2), rciðtÞ represents the utilized CPU resource of data cen-
ter di at time interval t, pidlei and pfulli denotes the power of di
when the utilization of it’s CPU is at 0 and 100 percent,
respectively [18].

In our model, the energy supply of a data center includes
green renewable energy and brown energy from grid. The
policy of energy using is to give high priority to deploying
the green energy, where ei;t is denoted as the amount of gen-
erated green energy at time interval t. rgreeni;t and rbrowni;t repre-
sent the price of green and brown energy at time interval t,
respectively. Energy cost at time interval t can be calculated
as follows:

Ct
energy ¼ max

�
ui;t � ei;t; 0

�
rbrowni;t

þmin
�
ui;t; ei;t

�
r
green
i;t :

(3)

Moving a job to a different data center involves the migra-
tion of virtual clusters and redirection of data forwarding
policies at gateways. Let dðjk; tÞ denote the data center accom-
modating job k in time interval t, and notation qtkði; i0Þ denote
the cost of moving job jk from data center i to i0. As the result
of uncertainty of performance degradation and network con-
sumption during iob jk migration, only core relevant factors
are utilized for estimation [19]. The total job migration cost at
time interval t is therefore expressed as

Ct
migrate ¼

X
jk2J

qtkðdðjk; tÞ; dðjk; t� 1ÞÞ

¼
X
jk2J

resjk � dRatiojk � senjk ;
(4)

where resjk represents memory size of iob jk migration,
dRatiojk represents page dirty ratio of iob jk migration,
and senjk represents application sensitivity against iob jk
migration.

Finally, the total cost over the whole time intervals on
energy consumption and job migration can be calculated by

C ¼
XT
t¼1

ðCt
energy þ Ct

migrateÞ: (5)

Our proposal is designed for minimizing the total cost by
making job scheduling decisions, i.e., fJt

1; J
t
2; . . . ; J

t
mg, at the

beginning of each time interval, without the knowledge of
future renewable energy generation ei;t and job migration
cost function qtkði; i0Þ. The systems and variables in this
paper are summarized in Table 1.

3 REINFORCEMENT LEARNING BASED LOAD

BALANCING

In this section, an RL-based method is proposed for dealing
with the cost minimization issue. The method overview is
first presented, followed by design details.

3.1 Overview

RL is an approach to approximate the optimal reward by
iteratively learning the feedback from historical decisions
named actions. The learning process of RL consists of a
sequence of actions and the corresponding rewards [14]. In
each iteration, RL evaluates the expected effect of taking dif-
ferent actions by a value function. Then RL selects an action
to execute, and observes the state that appears thereafter,
the reward associated with this state that can be used to
refine its value function. Generally, the reward is a metric of
the benefit associated with an action in a certain state. Since
RL do not need any priori knowledge, it is quite appropriate
to the cost reduction among complex data centers.

Our proposed algorithm is mainly designed to migrate
jobs among geo-distributed data centers according to the
feedback of historical job scheduling decisions. We abstract
our algorithm as a job scheduler, whose interaction with job
execution on data centers is shown in Fig. 2a. First, the job
scheduler selects an action and sends it to data centers. Then,
data centers execute the action. Finally, data centers give
feedback including state and reward to job scheduler for its
learning. The temporal relations among these procedures is
shown in Fig. 2b. In the beginning phrase of every time inter-
val t, the job scheduler determines the locations of all jobs

TABLE 1
Symbols and Variables

Notation Description

D ¼ fd1; d2; . . . ; dmg, a set of data centers
ei;t the renewable energy generation at data

center di 2 D during time interval t
J ¼ fj1; j2; . . . ; jng, a set of big data jobs
ck the data arriving rate of job jk
ui;t the energy consumption of data center di at

time interval t
rciðtÞ the utilized CPU resource of data center di

at time interval t
pidlei the power of di when the utilization of it’s

CPU is at 0%
pfulli the power of di when the utilization of it’s

CPU is at 100%
r
green
i;t the price of green energy at time interval t

rbrowni;t the price of brown energy at time interval t

Ct
energy the energy cost at data center i in time inter-

val t
qtkði; i0Þ the cost of moving job jk from data center i

to i0
resjk memory size of iob jk migration

dRatiojk page dirty ratio of iob jk migration
senjk application sensitivity against iob jk migra-

tion
Ct

migrate the total job migration cost at time interval t

C the total cost
st the system state in RL
A a set of action at ¼ fJt

1; J
t
2; . . . ; J

t
mg in RL

rtþ1 the reward of action at in state st in RL
� the discount factor of cumulative reward in

RL
Qpðst; atÞ the action-value function in RL. It calculates

the action-value of at in state st
s the pool size in SPS or RPS
t the random discarding ratio in RPS
h h 2 ð0; 1Þ and controls the action selection

in RL
M the training epoches of RL
F ðst; atÞ the function trained by NN to approximate

Qpðst; atÞ
a�t the action that maximizes the output of

function F ðst; atÞ
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denoted as at ¼ fJt
1; J

t
2; . . . ; J

t
mg, which is referred to as an

action. Such decision ismade according to the current system
state st that includes information as shown in Table 2. After
applying action at, we can observe a new system state stþ1

associated with a reward rtþ1 ¼ Ct
energy þ Ct

migrate in the end
phrase of time interval t. We model the whole system as a
Markov decision process (MDP) as:

fhs0; a0; r0i; hs1; a1; r1i; . . . ; hsT ; aT ; rT ig: (6)

In the following, we will elaborate how to determine the
action at for each time interval t tominimize its total reward.

3.2 Algorithm Design

Given st and at, we define an action-value function
Qpðst; atÞ as follows:

Qpðst; atÞ ¼ E

�
1

rtþ1 þ �rtþ2 þ �2rtþ3 þ � � �
���st; at

�

¼ E

�
1

rtþ1 þ � 1
Qpðstþ1;atþ1Þ

���st; at
�
;

(7)

where � is a discount factor. Let � 2 ½0; 1� so that the
rewards in the nearer future have larger weights. In each
time interval, we need to select the action a�t leading to the
maximum value of function Qpðst; atÞ, i.e.,

a�t ¼ argmax
at2A

Qpðst; atÞ; (8)

where A is a set of action at ¼ fJt
1; J

t
2; . . . ; J

t
mg that can be

chosen in st.
Since future rewards are affected by many factors, such

as resource utilization of each data center and local weather
conditions as shown in Table 2, the traditional reinforce-
ment learning based on temporal differences [15] cannot
accurately calculate Qpðst; atÞ. Neural Network (NN) is
deployed to train a function F ðst; atÞ that approximates the
action-value function with high accuracy. NN can be con-
sidered as a composite function that regards state st as input
and outputs an action at. As shown in Fig. 3, an example

neural network has 4 layers, and each layer contains a num-
ber of computing items called neurons. Each neurons
receives values from all neurons in its upper layer, which
are denoted by a vector x and conducts a calculation in the
form of wxþ b, where w and b are called weight and bias.

The pseudo code of our proposed RL-based algorithm is
shown in Algorithm 1. We start with an initial NN F ðst; atÞ
with random weight v and bias b. In the beginning of each
time interval, we generate a random number z 2 ½0; 1� obeys
uniform distribution. If z < h, we select the action a�t that
maximizes the output of function F ðst; atÞ. Otherwise, we
use the randomly selected action. After applying the action
a�t , we can observe a system state stþ1 at the end of time inter-
val t, its associated reward rtþ1 will be used to retrain the NN
based on the stochastic gradient descent (SGD)method [20].

Algorithm 1. Our Proposed RL-Based Algorithm

Input: s0; A ¼ fa0; a1; a2; . . . ; atg; �; h;M
Output: ðw; bÞ
1: begin
2: initialize the NN F ðst; atÞwith random weight v and

bias b, st ¼ s0
3: for i 2 ð1; 2; . . . ; T Þ do
4: for j 2 ð1; 2; . . . ;MÞ do
5: generate random number z 2 ½0; 1�
6: if z < h then
7: select action a�t 2 A that maximizes the

output of function F ðst; atÞ
8: else
9: randomly select action a�t 2 A
10: end
11: execute a�t , and observe reward rtþ1 and

state stþ1

12: retrain (st; a
�
t ; rtþ1)

13: begin
14: retrain NN using ðst; a�t ; rtþ1Þ by SGD
15: end
16: set st ¼ stþ1

17: end
18: end
19: end

Fig. 2. The scheme and procedures of load balancing.

TABLE 2
The Information Every State Contains

Attributes Description

sat The CPU usage in current state.
sbt The free RAM size in current state.
sct The free I/O bandwidth in current state.
sdt The current weather.
set The current electricity price.

Fig. 3. Training process.
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As shown in Fig. 3, every circle corresponds to an execu-
tion of function retrain in Algorithm 1. We use tuple
ðst; a�t ; rtþ1Þ to train the NN by SGD. Algorithm calculates
wxþ b and uses it as the input of the latter neurons. By
repeating this operation, we can calculate the outputs
F ðst; a�t Þ of the whole NN. According to rtþ1, algorithm
tunes the w and b by SGD to update the network.

4 PERFORMANCE ENHANCEMENT

4.1 Random Pool Sampling

In Algorithm 1, we retrain the NN by using the SGD
method that requires stochastic sampling (SS) [20] of train-
ing data. However, such requirement cannot be met
because only one data record is generated and used in
retraining in the end phrase of every time interval. To
overcome this weakness, Simple Pool Sampling (SPS) [21]
is proposed to maintaining a pool to accumulate the train-
ing data. When the pool is full, it performs training process
and empties the pool. The weakness of SPS is that only the
data recently come can be sampled. Alternatively, we pro-
pose a random pool sampling (RPS) scheme to approxi-
mate SS such that the accuracy of NN can be further
increased. Since the RPS maintains a pool to store data, we
also replace SGD with mini-batch stochastic gradient
descent which generally has better accuracy than SGD
[22]. As shown in Fig. 4, we maintain a pool of historical
data and use them to retrain the NN based on mini-batch
stochastic gradient descent. When the pool is full, we ran-
domly discard some data records in the pool. Note that the
sampling method used in Algorithm 1 is a particular case
of RPS via installing the pool size to 1.

Combining RPS with mini-batch SGD, we propose a
novel algorithm called retrainOnBatch to replace the func-
tion retrain in Algorithm 1. The pseudo codes are shown in
Algorithm 2.

Algorithm 2. Function retrainOnBatch (st; a
�
t ; rtþ1)

1: if the sampling pool is full then
2: shuffle all data in the sampling pool to generate a

mini-batch
3: retrain the NN F ðst; atÞ using the mini-batch SGD
4: randomly discard s � t data records in pool
5: end
6: insert the new data record ðst; a�t ; rtþ1Þ into the pool

In Algorithm 2, we first check whether the sampling pool
is full or not. If it is full, we shuffle all data to generate a
mini-batch that will be used by SGD to retrain the NN, as
shown in lines 2 and 3. Then, we randomly discard s � t

data records, where s is the pool size and t is the discarding
ratio. If it is not full, we just insert the new data records into
the pool.

To theoretically evaluate the performance of different
data sampling methods, we use the metric of Bhattacharyya
distance [23] that is defined as follows.

Definition 1. Bhattacharyya Distance is a measurement of the
similarity between two discrete probability distributions. For
two distributions p� and q� in the same region X, the Bhatta-
charyya distance can be written as

DBðp�; q�Þ ¼ �lnðBCðp�; q�ÞÞ; (9)

where BC is called Bhattacharyya coefficient that can be calcu-
lated by:

BCðp�; q�Þ ¼
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ðxÞq�ðxÞ

p
: (10)

The distributions of sampling data under SS, SPS, and
RPS are denoted by pSS , pSPS and pRPS , respectively. We
show the superiority of RPS to SPS, which brings further
increasement of accuracy, in the following theorem.

Theorem 1. DBðpRPS; pSSÞ � DBðpSPS; pSSÞ
Proof. The pool is assumed full at time interval t with no

generality loss, and mini-batch based SGD samples s

shuffled tuples from the pool.
Since tuples are generated one by one, we denote

tuples ðstatet; rewardt; actiontÞ t 2 ½0; T �with sequence as

ðu0; u1; . . . ; uT Þ: (11)

Then, we denote a sequence P as

ðp�0; p�1; . . . ; p�T Þ; (12)

where pi is the probability to be sampled of the tuple ui.
The PSS can be denoted as

PSS ¼ s

T
;
s

T
; . . . ;

s

T

� �
: (13)

According to the definition of SPS and RPS, PSPS is for-
mulated as

PSPS ¼ ð0; 0; . . . ; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s

; 0; . . . ; 0Þ; (14)

and PRPS is formulated as

PRPS ¼ ðð1� tÞk; . . . ; ð1� tÞk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s

;

ð1� tÞk�1; . . . ; ð1� tÞk�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t�s

; . . . ;

ð1� tÞ2; . . . ; ð1� tÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t�s

; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
t�s

; 0; . . . ; 0Þ;

(15)

where k represents the times of when the pool is full,
k / t.

Use Eq. (10) to calculate the Bhattacharyya Coefficient
between SPS and SS, we can get

BCðpSPS; pSSÞ ¼ s

ffiffiffiffi
s

T

r
: (16)

Fig. 4. Random pool for sampling.
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Similarly, the coefficient between RPS and SS is calcu-
lated by

BCðpRPS; pSSÞ ¼ ts

ffiffiffiffi
s

T

r
þ ts

ffiffiffiffi
s

T

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞ1

q

þ � � � þ ts

ffiffiffiffi
s

T

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞk�1

q

þ s

ffiffiffiffi
s

T

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞk

q

¼ s

ffiffiffiffi
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(17)

When the t is sufficiently large, we can get

BCðpRPS; pSSÞ ¼ s

ffiffiffiffi
s

T

r
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
Þ

> s

ffiffiffiffi
s

T

r
¼ BCðpSPS; pSSÞ:

(18)

Combine Eq. (18) with Eq. (9), we can get

DBðpRPS; pSSÞ � DBðpSPS; pSSÞ; (19)

which finishes the proof. tu

4.2 Unidirectional Bridge Network Structure

In this section, we further enhance our proposed RL-based
algorithm by proposing a unidirectional bridge network
(UBN) structure to accelerate the training process of NNs. It
is motivated by the fact that neurons in the NN contain use-
ful knowledge that can be reused in training the new NN.

In the proposed UBN structure, shown in Fig. 5, we cre-
ate transfer layers between the new NN and the one trained
previously. Every transfer layer contains a number of neu-
rons that randomly collect the outputs from the trained NN.
The outputs of transfer layers are sent to the new NN. Every
hidden layer and output layer in the new NN receives data
from both the previous layer and a transfer layer.

Since the transfer layers bring extra neurons and associ-
ated connections, we propose the random dropout [24]
strategy to reduce the number of retrained neurons. As
shown in Fig. 6, the dropout strategy is to randomly remove
some neurons and their connections. This transfer layer can
be considered as a layer with two neurons in training. Note
that the dropout strategy runs at the beginning of every iter-
ation of training, and the dropped neurons just do not

participate in the current training iteration. In every itera-
tion of training process, the number of dropped neurons is
kept at a stable value, but the neurons are uncertain.

5 EXPERIMENTS

To study the benefits of our proposed RL-based algorithm,
extensive experiments based on real world data sets are per-
formed in this section.

5.1 Experimental Setup

In our experiments, we use the following real-world data
sets including data center location, workload, renewable
energy generation, and electricity price of traditional power
grid.

(1) Workload: We use the Google cluster-usage traces
[25] collected on May, 2011, which contain 29-day
job information on a cluster of about 12.5k machines.

(2) Renewable energy generation: We consider three data
centers located in Prewitt in NewMexico (NM), Phoe-
nix in Arizona (AZ) and Los Angeles in California
(CA), where renewable energy is generated according
to weather conditions published by National Renew-
able Energy Laboratory [26]. We use the energy cost
and renewables for the same time. The renewable
energy data includes the all-day generation of solar,
water, andwind.

(3) Electricity price: The electricity price is obtained
from the website of Energy Information Administra-
tion [3].

To study the influence of NN on the proposed RL-based
algorithm, the discount factor � of cumulative reward in RL
is set as 0.1, 0.3, 0.5, 0.7, 0.9, and the h, which controls the
action selection in RL, is set as 0.1, 0.3, 0.5, 0.7, 0.9. we con-
sider four NN structures with different combinations of
type, number of layers, and dropout polices in our experi-
ments. As shown in Table 3, one structure uses Convolu-
tional Neural Network (CNN) [27] whose kernel size is set
to 3, and others adopt multilayer perception (MLP) [24]
with one kernel. The three structures using MLP have
different number of layers and dropout policies. For

Fig. 5. Unidirectional bridge network structure.

Fig. 6. Details of UBN.

TABLE 3
Different Network Structures

Structure Type no. of layers dropout kernel

A CNN 13 Yes 3

B MLP 13 Yes 1
C 9 Yes 1
D 5 No 1
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comparison, we also show the performance of following
algorithms as benchmarks.

� Round robin (RR): It schedules jobs to data centers in
a round-robin manner without any information
about renewable energy generation [28].

� MinBrown (MB): The MB algorithm is developed for
the minimizing brown energy consumption based
on workload scheduling strategy [29].

� Temporal Difference (TD): TD is the default algorithm
used by traditional RL [15].

5.2 Experimental Results

We analyze the experimental results from the aspect of the
affects of network structures, the performance of RPS, the
impacts of UBN, the comparison with other algorithms, and
the impact of � and h. Moreover, the convergence of the
reinforcement learning is discussed.

5.2.1 The affects of Network Structures

Wefirst study the total cost and convergence speed of our pro-
posed algorithm with different NN structures. In Fig. 7a, we
normalize all cost to the result of structure D. The normalized
cost of structures A, B, and C is lower than 1, indicating that
they outperform D. Structure B has the lowest cost because of
the advantages of MLPwith larger number of layers. The con-
vergence is shown in Fig. 7b, where we observe that structure
D has the fasted converge speed, but leading to a highest cost
and lowest average action-value. Meanwhile, structure B con-
verges slower, but it has lowest cost and highest average
action-value. Therefore, the structure B canmake a good trade-
off between cost, convergence speed, and convergence effect,
whichwill be adopted in the following experiments.

5.2.2 The Performance of RPS

We then investigate the performance of RPS by changing
the discarding ratio. As shown in Fig. 8a, the lowest cost
can be achieved by setting the discarding ratio to 50 percent.

That is because under larger discarding ratio, many data
records in the pool will be dropped when it is full, leading
to an obvious temporal relation between two mini-batch,
i.e., the data in latter mini-batch are always later than that in
the previous. On the other hand, retraining based on mini-
batch SGD will be frequently triggered under smaller dis-
carding ratio, and a large amount of redundant data will be
generated. Furthermore, the results in Fig. 8b demonstrate
that setting discarding ratio to 50 percent can guarantee the
fastest convergence speed and the highest average action-
value. Therefore, when the discarding ratio is set to 50 per-
cent, the RPS converges the best.

5.2.3 The Impacts of UBN

We investigate the acceleration of UBN under different
dropout policies. As shown in Fig. 9, the algorithm without
UBN slowly converges, but others with dropout has higher
average action-value and faster convergence speed, since
dropout makes the NN more adaptive by preventing the
solution from sinking into a local optimum. UBN with 50
percent dropout has highest average action-value and con-
verges the best.

5.2.4 The Comparison with Other Algorithms

In this set of experiments, we choose structure B with ran-
domly discarding ratio at 50 percent, and a pre-trained

Fig. 7. Cost and reward in different NN structure. Fig. 8. Cost and reward in different discarding ratio of RPS.

Fig. 9. Average action-value of data centers.
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network is connected to the network to be trained using
transfer layers with 50 percent dropout. Comparison among
our proposed RL-based Algorithm (Strategy Learning Algo-
rithm, SLA), advanced strategy learning algorithm (ASLA)
that combines SLA with Algorithm 2, and benchmark algo-
rithms are shown in Fig. 10. As shown in Fig. 10, ASLA has
better performance on the normalized average cost saving
than most of benchmark algorithms and SLA. In ASLA, the
job scheduler has the exploration mechanism controlled by
h, which prevent the data centers from an extreme load
imbalance. Specially, the average action-value comparison
among SLA, ASLA, and TD is shown in Fig. 10b. According
to Fig. 10b, SLA and ASLA both perform better than TD
that uses tabular action-value function.

5.2.5 The Impact of � and h of ASLA

The normalized costs of ASLA with different � and h are
shown in Fig. 11. According to Fig. 11a, the costs are basi-
cally not affected by the value of �. We can see that the nor-
malized cost is influenced by h obviously in Fig. 11b. Since
the low h controls ASLA to concern more load rather than
cost, when the h is set to 0.9, ASLA saves the most cost.

6 RELATED WORK

6.1 Green Data Centers

The energy reduction issue of a single data center are under-
going extensively studied in recent years. For example, Wu
et al. [4] have proposed to use dynamic CPU voltage to min-
imize power consumption of data centers. A similar
approach could dynamically adjust the performance of data
centers according to the load [5].

The other branch focuses on using task distribution techni-
cal across geo-distributed data centers to achieve costminimi-
zation. Rahman et al. [30] presented a survey of geographic
load balancing in smart grid. Liu et al. [31] proposed Green-
Cloud, integrating onlinemonitoring andVMplacement opti-
mization. Zhang et al. [32] developed Hierarchical EneRgy
Optimization (HERO) scheme for the energy consumption

reduction of network equipments. The HERO switches off a
part of network switches and connections, which ensures the
entire network’s connectivity and promotes the links utiliza-
tion. Adel et al. [28] applied fuzzy inference engine on data
centers control. Liu et al. [6] maximized green energy’s usage
(renewable energy) and minimized the brown energy’s usage
(fossil fuel energy), respectively.

6.2 Reinforcement Learning

Reinforcement learning attracts more and more attention
recent years and it is often used in controlling and routing
[33], [34]. Luiz et al. [35] developed a transfer learning based
Q-learning approach. Wu et al. [36] proposed to use Q-learn-
ing algorithm to optimize the last 2-hops from the source to
the destination for long-term efficiency. Mnih et al. [37] suc-
cessfully combined the deep neural network (DNN) with
reinforcement learning and achieved a excellent result inwin-
ning game scores. Cui et al. [38] developed anNN-based rein-
forcement learning algorithm to optimize trajectory tracking
for autonomous underwater vehicle (AUV), where a critic
NN and an action NN are used. Lange et al. [39] propose to
combine deep aoto-encoder NN with batch-mode reinforce-
ment learning in order to deal with the disparity between the
visual observation and state space.

However, there are only a few researches of combining
reinforcement learning with geographic data centers load
balancing. Lin et al. [15] proposed a reinforcement learning-
based framework to optimize the power management, but
they just uses a simple value function, which may not be
able to fit the data centers appropriately.

6.3 Load Balancing

Load balancing is a research hotspot in geo-distributed data
centers. Tang et al. [40] proposed a heuristic scheduling
approach to balance the workload dynamically. Chen et al.
Wang et al. [41] proposed a method of load balancing

Fig. 10. Comparison among ASLA, SLA, and benchmark algorithms.

Fig. 11. Costs of ASLA with different � and h.
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towards multimedia big data in data centers. The method is
based on hybrid stream and CNN. Chen et al. [42] proposed
a network topology aware based approach to perform load
balancing, which takes advantage of parallelization and is
able to speed up load balancing process. Gupta et al. [43]
applied Ant Colony Optimization in load balancing. The
algorithm performs load balancing by detecting overloaded
and underloaded servers. Shao et al. [44] investigated the
optimal load balancing problem and took transmission
delay into account.

Different from these previous work, our approach uses
reinforcement learning to distribute jobs coming to the data
centers, and replaces the value function with NN. Different
from these studies, our proposal are self-learn online algo-
rithms. In addition, we design a random pool sampling
approach to dismiss the time correlation among rewards and
speed up the convergence of the NN. We also propose a new
network structure for receive the priori knowledge fromother
network, which brings significant efficiency improvement.
We propose the combination of RL andNN for the first time.

7 CONCLUSION AND FUTURE WORK

In this paper, we have investigated a big data scheduling
problem for reducing the cost of geo-distributed data cen-
ters. An RL based job scheduling algorithm is proposed
with NN, and two techniques are developed to enhance the
performance of our proposal. Specifically, we propose RPS
to retrain the NN via accumulated training data, and design
a novel UBN structure for further enhancing the training
speed. Extensive experiments show that our proposal is
able to reduce the data centers’ cost significantly compared
with some benchmark algorithms.

Motivated by this paper, there are many interesting
directions that can be studied. With respect to the design of
parallel algorithms, one aspect is to use multiple processes
to accelerate the learning speed of job scheduler. Another
aspect is to investigate the combination of ensemble learn-
ing and reinforcement learning for rapid deployment. In the
field of decentralized distributed systems, multi-agent rein-
forcement learning is an aspect can be studied. As for the
exploration policy, our approach uses simple greedy algo-
rithm based on probability. However, exploration policy is
also important in practice. Further studies will focus on
reducing the cost of cloud service.
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