
76

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet

KUN WANG, JUN MI, CHENHAN XU, and QINGQUAN ZHU, Nanjing University of Posts
and Telecommunications
LEI SHU, Guangdong University of Petrochemical Technology
DER-JIUNN DENG, National Changhua University of Education

In the age of multimedia big data, the popularity of mobile devices has been in an unprecedented growth, the
speed of data increasing is faster than ever before, and Internet traffic is rapidly increasing, not only in volume
but also in heterogeneity. Therefore, data processing and network overload have become two urgent problems.
To address these problems, extensive papers have been published on image analysis using deep learning, but
only a few works have exploited this approach for video analysis. In this article, a hybrid-stream model is
proposed to solve these problems for video analysis. Functionality of this model covers Data Preprocessing,
Data Classification, and Data-Load-Reduction Processing. Specifically, an improved Convolutional Neural
Networks (CNN) classification algorithm is designed to evaluate the importance of each video frame and
video clip to enhance classification precision. Then, a reliable keyframe extraction mechanism will recognize
the importance of each frame or clip, and decide whether to abandon it automatically by a series of correlation
operations. The model will reduce data load to a dynamic threshold changed by σ , control the input size of
the video in mobile Internet, and thus reduce network overload. Through experimental simulations, we find
that the size of processed video has been effectively reduced and the quality of experience (QoE) has not
been lowered due to a suitably selected parameter η. The simulation also shows that the model has a steady
performance and is powerful enough for continuously growing multimedia big data.

CCS Concepts: � Networks → Hybrid-stream model; Data path algorithms; � General and
reference → Design

Additional Key Words and Phrases: Multimedia, big data, mobile Internet, real-time, load reduction, net-
working

ACM Reference Format:
Kun Wang, Jun Mi, Chenhan Xu, Qingquan Zhu, Lei Shu, and Der-Jiunn Deng. 2016. Real-time load
reduction in multimedia big data for mobile Internet. ACM Trans. Multimedia Comput. Commun. Appl. 12,
5s, Article 76 (October 2016), 20 pages.
DOI: http://dx.doi.org/10.1145/2990473

Support was provided by NSFC (61572262, 61100213, 61571233, 61373135, 61572172); SFDPH
(20113223120007); NSF of Jiangsu Province (BK20141427), NUPT (NY214097); Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions; Open Research Fund of Key Lab of Broadband
Wireless Communication and Sensor Network Technology (NUPT), Ministry of Education (NYKL201507);
Jiangsu Qing Lan Project; Educational Commission of Guangdong Province (2013KJCX0131); Guangdong
High-Tech Development Fund (2013B010401035); International and Hong Kong, Macao & Taiwan collabo-
rative innovation platform and major international cooperation projects of colleges in Guangdong Province
(No. 2015KGJHZ026); and the 2014 Guangdong Province Outstanding Young Professor Project and 2013
Top Level Talents Project in the Sailing Plan of Guangdong Province.
Authors’ addresses: K. Wang, J. Mi, C. Xu, and Q. Zhu, Key Lab of Broadband Wireless Communication and
Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China;
emails: kwang@njupt.edu.cn, junmiia@163.com, xchank@outlook.com, njuptzqq@163.com; L. Shu, Guang-
dong Provincial Key Lab of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petro-
chemical Technology, Guangdong, 525000, China; email: lei.shu@ieee.org; D.-J. Deng, National Changhua
University of Education, Taiwan; email: djdeng@cc.ncue.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1551-6857/2016/10-ART76 $15.00
DOI: http://dx.doi.org/10.1145/2990473

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

http://dx.doi.org/10.1145/2990473
http://dx.doi.org/10.1145/2990473
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2990473&domain=pdf&date_stamp=2016-10-12

76:2 K. Wang et al.

1. INTRODUCTION

We are now living in the era of multimedia data. Data is undergoing an unprece-
dented upsurge. Mobile devices are becoming mainstream, and Internet traffic has
experienced an exponential growth in volume as well as in heterogeneity [Hernandez
2010]. With the growth trends, though we benefit significantly from such data re-
sources, many problems may appear simultaneously, for example, data processing and
network overload. Many aspects of data, including storage, transmission, processing
and application, are confronted with great challenges. Data processing and analyzing
are the most urgent problems.

Multimedia big data consist of both structured and unstructured data [Han et al.
2016; Pan et al. 2015]. One of the challenges in dealing with image, video, and audio
is the much more complex algorithms used for content analysis than ever before.
Generally, 1s of a video displays at least 25 images [Lee et al. 2015; Chen et al. 2015].
Furthermore, the video size inevitably increases if higher resolution is required when
users ask for better quality of experience (QoE) [Dong et al. 2015; K. Wang et al. 2015;
Zhang et al. 2011]. A novel data-processing method that can be applied to reduce data
volume and network load is now urgently needed.

To address these problems, methods related to traffic analysis and anomaly detec-
tion become critical in mobile Internet. Generally, network-overload problems caused
by big data can be addressed by two strategies. One is dispersing blocked traffic in
advance by optimizing route selection; the other is recognizing abnormal traffic and
abandoning it before transmission. The vertical handoff (VHO) decision algorithm has
a good performance in heterogeneous traffic [Xia et al. 2012], but when new metrics
are introduced, the video high-density (VHD) process will become more complex. The
Vehicle Classifier and Traffic flow analyzeR (VECTOR) is useful for online traffic flow
analysis [Morris and Trivedi 2008], but one challenge is how to apply it to video anal-
ysis. When it comes to the other strategy, the primary task is to correctly classify the
videos. The Convolutional Neural Network (CNN), a typical feed-forward neural net-
work, outperforms in classifying 2D shapes [He et al. 2015]. In literature, training of
a CNN is rather time-consuming due to the high complexity of the model. The hybrid
convolutional neural network (HCNN), a model which combines the original CNN and
winner-takes-all mechanism, was proposed to simplify the original CNN model, so that
it can acquire improved speed and better precision of pattern recognition [Mrazova and
Kukacka 2008; Zheng et al. 2015]. The main problem of the model is that it is only
suitable for 2D shapes.

Compared with extensive studies on using deep learning for image analysis, only a
few works have exploited this approach for video analysis [Ji et al. 2013; Karpathy
et al. 2014]. A two-stream CNN structure was proposed to process video by divid-
ing the original video information into spatial information and temporal information
[Simonyan and Zisserman 2014]. Then, an improved two-stream model aimed at deal-
ing with video classification was proposed [Ye et al. 2015]. The model achieves compet-
itive performance by training two CNNs, but the fusing multiple network model still
needs to be improved when in a strong network, in which the traffic is very heavy.

In this article, we address the problem of mobile Internet overload [Dong et al. 2014],
especially for video in multimedia big data [Li et al. 2015]. We take the second strategy
discussed earlier. Abnormal traffic can be considered as unimportant frames or clips in
the video streams, which can be abandoned without affecting users’ QoE. Specifically, in
contrast to conventional single input [H. Wang et al. 2015], we work with a two-stream
model that divides the input information into spatial and temporal information, and
we set two inputs to separately deal with input videos’ different information. One input
deals with static information, such as scenes and objects; the other deals with dynamic
information, such as motion. We consider that the video stream is made up of numerous

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:3

frames or clips, and each frame or clip can be viewed as images. Then, we can analyze
and monitor the abnormal traffic in mobile Internet by recognizing these images, and
thus solve the problem of network overload. Based on these considerations, we propose
a hybrid-stream model that contains a reliable keyframe extraction mechanism and an
improved CNN classification algorithm to enhance classification precision and relieve
the network overload.

However, there are several challenges when performing video analysis. The primary
challenge is how to improve the video classification’s precision. Generally, most video
classification algorithms use low-dimensional representations for the sake of reducing
the videos’ dimensionality [Baktashmotlagh et al. 2014; B. Gu and V. Sheng 2016]. In
our model, we propose an improved CNN algorithm in which we add a time dimension,
forming a 3-dimensional matrix, comparing with conventional CNN algorithm’s 2-
dimension image analysis, to improve classification precision. How to deal with the
classified outcomes to reduce network overload becomes another problem. In our model,
we put forward a keyframe extraction mechanism to solve the problem. Through the
mechanism, we try to find a suitable output number that can get a reduced load and
does not affect users’ QoE.

For video processing [Wang et al. 2016; Xia et al. 2016], we consider four steps in
this article: preprocessing, classification, recognition, and extraction. The main goal of
preprocessing is to make input video streams suitable for our model. With classification
we aim to describe the importance of each frame or clip; recognition and extraction are
supposed to realize network overload reduction. In summary, we mainly focus on real-
time video processing to relieve network overload in mobile Internet. The contributions
of our article are as follows:

—A hybrid-stream model considered to solve the network overload problem in mobile
Internet is proposed. We make use of different types of input to improve classification
precision.

—An improved CNN classification algorithm, which is used to recognize video informa-
tion, is proposed. In the algorithm, we add a time dimension, forming a 3-dimensional
matrix to classify video frames and clips.

—A keyframe extraction mechanism is proposed. We aim to realize load reduction and
better QoE performance by adjusting suitable parameters.

The rest of this article is organized as follows. In the next section, we review the
related works. Section 3 outlines our system model. In Sections 4 and 5, we describe the
classification module and load-reduction module in detail, respectively. In Section 6,
different types of comparative results are provided to show system performance. In
Section 7, we present our conclusions.

2. RELATED WORK

In this section, we summarize existing methods concerning network traffic-load bal-
ancing. We also discuss some solutions about abnormal traffic detection. Finally, we
summarize the major methods proposed to realize real-time problems.

2.1. Network Traffic Load Balancing

In mobile Internet, in order to pursue higher throughout and reduce unexpected end-
to-end delay, a common approach is to balance traffic among each mobile node. Some
popular themes about load balancing have been well studied recently. One is based on
flow hashing [He et al. 2015], and another is based on swarm intelligence (SI) [Rango
and Tropea 2009].

In terms of flow hashing, Equal Cost Multipath Routing (ECMP) has drawn many
researchers’ attention [He et al. 2015] because congestion easily occurswhen hash

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:4 K. Wang et al.

collisions happen. A centralized scheme is proposed [Al-fares et al. 2010; Fu et al.
2015], in which the main idea is collecting the state of the network, then rerouting
overflows when the network is busy. The method is simple and easy to realize, but the
main problem is its large time constraints and extra network infrastructure. Another
theme that concerns in-network reactive distributed load balancing is proposed that
solves the time-constraint problem, but still has special requirements on networking
hardware [Alizadeh et al. 2014].

In terms of SI, the Ant-Based Control algorithm (ABC algorithm) shows good perfor-
mance on a network in which its dynamic data have a very fast change [Kroon 2002].
Other works based on SI have been proposed in the literature, such as AntNet [Kroon
2002], an ant-routing algorithm for mobile ad-hoc network (ARAMA) [Hussein et al.
2005]. AntNet is an adaptive agent-based routing algorithm that has a good perfor-
mance on packet-switched communications networks. ARAMA is a biologically based
routing algorithm, which aims to balance the distribution of energy usage and optimize
the number of hops. However, these algorithm cannot adopt different metrics. Com-
bined with these algorithms, load balancing and energy aware ARAMA (LBE-ARAMA),
a novel probabilistic routing algorithm based on SI, is proposed to solve these problems
through a cooperation mechanism [Rango and Tropea 2009].

When the network traffic mainly comprise videos, a queue-occupancy-based load-
balancing solution (ViLBaS) is proposed [Hava et al. 2015]. It is a new selective load-
balancing solution for video; to acquire better QoE, it reroutes flows selectively around
congested nodes. However, unbalanced traffic distributions reduce the efficiency of a
network because of overloading in some network nodes, and classic routing solutions
take no consideration of load; thus, the network may get overloaded rapidly. If we use
a load-balancing strategy, time constraint and extra network infrastructure problems
should be considered. In this article, we use another strategy that is similar to abnormal
traffic detection.

2.2. Abnormal Traffic Detection

Traffic flow is an important feature for monitoring network anomalies, and it is eas-
ily affected due to the randomness of networks. Abnormal traffic in multimedia big
data causes a bad QoE for users [Wang et al. 2014]. Therefore, research on abnormal
traffic detection is important and necessary, and attracts many researchers. A bidirec-
tional flow model aimed to extract pivotal traffic metrics and reduce flow records in
large-scale networks [Qin et al. 2010; Wang and Yu 2013]. By monitoring the dynamic
changes of traffic patterns, the model obtains main traffic flow patterns, then detects
potential anomalies to reduce the flow records. Another method using the core concept
of origin-destination flow (ODFLOW) is useful for large-scale network attack detec-
tion, but has no prominent effect on traffic volumes [Lakhina et al. 2005]. Lakhina
et al. [2005] mainly finished the classifying works on traffic flows by analyzing the
ODFLOW matrix using principle component analysis (PCA). However, studies on the
remaining work, such as separating abnormal and normal network traffic, are very
challenging. A blind source separation method was presented to separate the behavior
indices [Qin et al. 2009]. In this method, the behavior indices contained in the traffic
patterns correspond to the unobserved input signals, and the observed output signals
are traffic features extracted from measurement. Another feature of this method is
in no need of supervised learning process. In another method based on volume, Zeb
et al. [2014] investigated the long-range dependence (LRD) behavior of Internet traf-
fic to detect volume-based anomalies. Song and Liu [2014] proposed a dynamic k-NN
cumulative-distance abnormal detection algorithm. It shows good performance in a
high-speed network. In this article, in contrast to almost abnormal traffic detection
discussed earlier, we aim to detect high correction traffic and process it to lower the
whole traffic volume in mobile Internet.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:5

2.3. Real-Time Systems

The method of detecting abnormal information in massive traffic data in real time is
not well studied. Almost all real-time systems are good at operating on continuous
data queries, but they have time-constraint problems in data attributes [Chiang et al.
2015; Wang et al. 2016]; due to the dynamic nature of data transmission, real-time
data queries tend to need more unexpected execution cost. However, nonreal-time sys-
tems easily acquire fairly good QoE, while real-time systems face many challenges.
One of these fundamental challenges is the enormous data size in mobile Internet. The
common solution is maximizing a compression rate. Based on that idea, many video-
and image-compression algorithms have been proposed. In addition, it is not the only
solution for real-time multimedia to stream over mobile Internet [Dong et al. 2015;
Zhao et al. 2015]. Distinguishing important and unimportant aspects of video frames
to minimize the data size is another solution. In terms of real time, using compression
to decrease the data size is far from sufficient, because the mobile environment has the
feature of changeability. Lee et al. [2015] proposed a content-based algorithm for fine
granular scalable coding. The proposed algorithm analyzes video contents to preserve
the more important part of the video and discard the less important part. The problem
with this algorithm is that it is not fully real time. In addition, an adaptive bitrate
streaming algorithm can divide multimedia contents into small pieces, and cognitive
streaming abstraction (CoSA) applies this algorithm in mobile Internet [Lee et al.
2015]. It works without degrading the QoE compared with other real-time systems.
Chiang et al. [2015] presented an online scheduling algorithm to maximize the total
number of satisfied users in asymmetric communication environments with time re-
quirements. It not only focused on a data-broadcasting approach, but also considered
the data items with time constraints. In a real-time system, the arriving data are un-
predictable, which leads to variable input volumes. What we do in this article is process
these data in advance to obtain a controlled data volume.

3. SYSTEM DESIGN

In this section, we first clarify the problem that video analysis always encounters.
Then, we propose a model to solve the problem. Next, we give a brief system overview.

3.1. Design Goals

We aim to establish a model for videos to realize video analysis and data load–reduction
processing. In order to achieve these goals, we first need to preprocess raw video re-
sources and improve the conventional CNN algorithm for video analysis. In addition,
we need a rule mechanism to complete video volume reduction. The following metrics
are also important for processing performance.

Accuracy of classification: In the model, the classification accuracy directly affects
the following data load–reduction processing.

Time-efficiency: With large amounts of data resources, the algorithm should be more
powerful and fast.

Data-Load Reduction: Since the final goal is to reduce network overload, the pro-
cessed data volume of transmission should be evaluated.

3.2. System Overview

The primary problem of mobile Internet is the increasing data. During transmission,
too much data traffic inevitably causes network overload. We focus on the network
load problem and try to conduct a study on video analysis and processing. Generally, a
video sequence normally contains a large number of frames. In order to avoid network
overload and ensure people’s watching quality simultaneously, a mechanism that can

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:6 K. Wang et al.

Fig. 1. Hybrid-stream model.

recognize the importance of the frame and then decide whether to drop the frame should
be established. However, when it comes to how to represent the importance of a frame
or a clip, an improved CNN algorithm that differs from conventional image-processing
algorithms should be designed to acquire more accurate classifications.

We design a hybrid-stream model, as shown in Figure 1. The functionality of the
hybrid-stream model can be summarized as three parts: Data Preprocessing (Input
Module), Data Classification (Classification Module) and Data Load–Reduction Pro-
cessing (Load-Reduction Module). Data Preprocessing deals with raw video resources.
In order to improve classification precision, we divide raw video resources into two
input forms: video frames and video clips. Video clips generally consist of several video
frames. Data Preprocessing transforms the raw video resources into another form,
which is suitable for Data Classification. Then, Data Classification Processing mainly
further processes the two input video streams, then outputs values that can represent
every frame’s or clip’s information. In the end of the classification module, we get two
types of value, which can be combined in a load-reduction module to produce a new
key feature parameter. Data Load–Reduction Processing is the final processing step
for deciding whether and how to drop a frame.

Generally, video data, sequential image frames, can be divided into spatial and tem-
poral components. The spatial component includes scenes and objects, and the tempo-
ral component contains motion information. Figure 1 shows a hybrid-stream model. In
the figure, we consider the video as two type of streams: spatial streams and timing-
sequence streams. Spatial streams include all kinds of scenes and objects contained
in the image, and timing-sequence streams are motion information contained in video
clips.

At the top of Figure 1, we show the processing of spatial streams. This structure is
similar to deep CNN for image classification. A single video image frame as inputs goes
through several convolutional layers, pooling layers and fully connected (FC) layers.
Finally, the network outputs a value that represents the information of the video image
frame. For timing-sequence streaming, in contrast to spatial streams with video image
frames as input, we use several continuous frames called video clips as input to capture
the motion information. Apart from input, the entire structure of processing timing-
sequence streams is basically the same as the spatial stream part.

We summarize all notations containing in this article in Table I.

3.3. Definitions

In this section, we define and describe the input form of every module.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:7

Table I. Summary of Notation

fi the video frame
w the collection of all weights in the network

wi, j the weight of 2-dimension
wi, j,k the weight of 3-dimension

d the dimension
b the bias
λ the scaling factor that can be learned
α feedback of the last result

hw,b(x) the desired output from the network
‖υ‖ the usual length cost function for a vector v

� the learning rate
N the total number of training inputs
σ the total number of keyframes
θ the keyframe ratio in all frames
η the dynamic load-reduction threshold
A the scene-change threshold⊙

the excerpt assembly and integration operation
Aver an averaging operation
Corr a correlation computing operation

To divide the input into two streams to process, we define two types of input, video
frame fi and video clip kfi, where k represents the video clip’s length. We treat the first
input, video frames, with the same method as image analysis. While dealing with the
second input, since a single video clip contains several video frames in time, we extend
a time dimension when dealing with video clips.

In a convolutional layer, video frames or video clips change into f j based on weight
matrices, wi, j or wi, j,k. However, when the input is video frames, convolutional output
can be described as

f i, j
j =

J∑
j=1

I∑
i=1

fi ∗ wi, j . (1)

The following equation is an expansion in time dimension to deal with video clips:

f i, j,k
j =

∑
k

j∑
i=1

I∑
i=1

fi ∗ wi, j,k. (2)

In a pooling layer, the input that comes from a convolutional layer is also organized
into feature maps to realize pooling operation, and the number of feature maps is the
same as the convolutional layer’s, but each is much smaller. By doing so, the resolution
of feature maps will be efficiently reduced. This reduction is realized by applying a
pooling function in the pooling layer. However, the pooling function can be a simple
function, such as averaging. In this article, we use an averaging function and define
the pooling function as

fm = λ

p∑
n=1

Averi,(m−1)×s+n, (3)

where p is the pooling size, s determines the overlap of the pooling windows, Aver
represents the averaging operation, and λ is a scaling factor that can be learned.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:8 K. Wang et al.

4. CLASSIFICATION MODULE

In this section, we detail the classification module used to label video frames’ infor-
mation value. We first describe a single frame CNN dealing with video frames, then
discuss its extension in time to deal with video clips.

4.1. Video Frames Processing

We give a simple model for solving image classification. A Feed-Forward Neural Net-
work (FNN) is an artificial neural network used to solve basic image classification
problems. Like many neural networks, FNN usually consists of three layers: input
layer, hidden layer, and output layer. On the basis of the number of hidden layers,
the network can be named as a single hidden-layer network or multiple-layer network
(MLNs). In the network, a neuron in a certain layer receives information from neurons
in previous layers through weighted connections. It computes the weighted sum of its
inputs

∑
j w j x j and passes this value through an activation function so that its output

information moves forward from the input layers, through intermediate layers, and to
the output layers.

There are two principal types of activation functions:
Threshold function

output =
{

0, i f
∑

j w j x j ≤ threshold
1, i f

∑
j w j x j > threshold (4)

Sigmoid function

σ (z) = 1/(1 + e−z)

bias = 1

/⎛
⎝1 + exp

⎛
⎝−

∑
j

w j x j − b

⎞
⎠

⎞
⎠ .

(5)

When the perceptron is used to solve some problems about image classification, the
input to the network is raw pixel data. The network correctly classifies the digit by
learning weights and biases. However, the learning work is difficult; a small change in
the weights or bias of any single perceptron in the network can sometimes cause the
output of that perceptron to completely flip. That flip may then cause the behavior of
the rest of the network to completely change in a very complicated way. Thus, it is not
immediately obvious how we can get a network of perceptron to learn. To overcome
this problem, a conventional method is proposed.

We apply a square error cost function to finish the following derivation. We suppose
C classes and N samples:

EN = 1/2
N∑

n=1

c∑
d=1

(
tn
d − yn

d

)2
, (6)

where tn
d denotes the d dimensions of the n samples and yn

d denotes the d output of the
n samples. If we only have one class, we can get the following expression:

EN = 1/2
N∑

n=1

(tn − yn)2 = 1/2‖tn − yn‖2. (7)

However, by reducing the error, we improve the image classification result.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:9

4.2. Video Clips Processing

Having discussed image classification, we return to video-image recognition. Essen-
tially, video is made up of continuous image streams; thus, video clips can be viewed as
several single images. In this article, we use a time dimensionality to connect several
neighboring frames; thus, the form of output with time dimensionality can be written
as

f i, j,k
j =

∑
k

J∑
j=1

I∑
i=1

fi ∗ wi, j,k. (8)

Equation (8) is an improved equation compared with Equation (1). As described
earlier, researchers generally use two dimensions to represent images; in Equation (8),
we add a time dimension k to extend Equation (1) to represent videos. However, we
consider Equation (8) to be our 3-dimensional convolution kernel to compute feature
maps pixel by pixel.

Next, we introduce our algorithm in detail. The main idea of our algorithm is decom-
posing the video into many single images, recognizing the importance of each image
and dropping the less important or abnormal ones. This method has two advantages:
(a) we can realize the purpose of dimension reduction; (b) from these images, we can
choose main images to improve accuracy and reduce the runtime of our algorithm.

First, we consider a P × Q grayscale image; then, we have P × Q input neurons, with
the intensities scaled appropriately between 0 and 1. We define the cost function as

J(W, b) = 1/2n‖hw,b(x) − α‖2. (9)

The inputs are 3-dimensionality matrixes. In our neural network, the dimensions of
the output need to be determined by the actual condition. The pseudo-code of the
classification module is presented in Algorithm 1.

ALGORITHM 1: Algorithm for Training 3-Dimensional Convolution Neural Network

1 Initialize w, b randomly
2 While cost function < threshold do
3 Compute feature maps pixel by pixel according to the 3-dimensional convolution kernel

f i, j,k
j = ∑

k

∑J
j=1

∑I
i=1 fi ∗ wi, j,k, and feed forward

4 Calculate cost function J(w, b) = 1/2n‖hw,b(x) − α‖2

5 If cost function > threshold then
6 Back propagation using method Stochastic Gradient Descent (SGD) method
7 End if
8 End while

It is hard for us to consider a problem that the number of images correctly classified
is not a smooth function of the weights and biases in the network. If making small
changes to the weights and biases in the network, it will be difficult to figure out how
to change the weights and biases to get improved performance. Thus, we use the mean
squared error (MSE) to make the small changes that can be found easily.

From the cost function, we know that the J(w, b) is nonnegative. In other words,
J(w, b) ≥ 0 and it becomes small, that is, J(w, b) ≈ 0, when hw,b(x) is approximately
equal to the training output, a, for all input x. Thus, we can try to find weights and
biases so that we will make J(w, b) ≈ 0. It is not good when the cost function J(w, b) is
large, which means that the hw,b(x) is not equal to the output a for a large number of

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:10 K. Wang et al.

inputs x. Thus, the goal of our training algorithm will be to minimize the cost J(w, b)
as a function of the weights and biases. In other words, we should try our best to find a
set of weights and biases that make the cost as small as possible or make J(w, b) = 0.

THEOREM 1. The cost function J can be guaranteed always to decrease.

PROOF. According to the basic conception of calculus, we can change J as the form of
Equation (9), and our algorithm is related to the vector; thus, we denote the gradient
vector by ∇ J. The change of cost function is analyzed as follows:

	J ≈ ∂ J
∂w

	w + ∂ J
∂b

	b (10)

∇ J =
(

∂ J
∂w

,
∂ J
∂b

)T

(11)

	J = ∇ J • (w,	b) (12)

(w,	b) = −η∇ J = −η

(
∂ J
∂w

,
∂ J
∂b

)T

(13)

	J = −η‖∇ J‖2 = −η

∥∥∥∥∥
(

∂ J
∂w

,
∂ J
∂b

)T
∥∥∥∥∥

2

≤ 0. (14)

According to Equations (12) and (13), we can find a small, positive parameter called
the learning rate that can be used to simplify the expression (11), and then we can
guarantee the J always decrease.

THEOREM 2. A factor 1/n or 1/m in cost function helps to train data in real time.

PROOF. Separating w and b, we get Equations (14) and (15). We set a small number
m to randomly chosen training inputs.

w′
k = wk − �

∂ J
∂wk

(15)

b′
k = bk − �

∂ J
∂bk

(16)

∑m
j−1 ∇ Jxi

m
≈

∑
x ∇ Jx

n
= ∇ J (17)

w′
k = wk − �

m
∂ J
∂wk

(18)

b′
k = bk − �

m
∂ J
∂bk

. (19)

In Equation (8), we scale the overall cost function by a factor 1/n. People sometimes
omit the 1/n, summing over the costs of individual training examples instead of aver-
aging. This is particularly useful when the total number of training examples is not
known in advance. This can occur if more training data is being generated in real time,
for instance. Also, in a similar way, the mini-batch update rule (17) and (18) sometimes
omit the 1/m term out the front of the sums. Conceptually, this makes little difference,
since it is equivalent to rescaling the learning rate �.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:11

5. LOAD-REDUCTION MODULE

In this section, we detail the load-reduction module used to abandon less important
frames. We first introduce this module’s input, then describe the keyframe extraction
mechanism.

5.1. Keyframes and Video Skim

After the classification module labels every video frame’s and clip’s information value,
we consider these information values as load-reduction module input. In literature,
keyframe and video skim are two basic video abstract mechanisms [Truong and
Venkatesh 2007]. They are used to help to recognize the importance of each frame.
In this article, we use the concept of the two video abstract mechanisms; instead of
using original video as input, we change the input to the information value output
from the classification module. We introduce keyframe and video skim in our article, as
follows. When dealing with video frames, we use keyframes, which can also be called
representative frames (R-frames). R-frames are a set consisting of a collection of salient
images extracted from the information values. The keyframe set K is defined as follows:

K = Fk− f rames(Video) = fr1 , fr2 , . . . , frσ
, (20)

where σ is the total number of keyframes and Fk− f rames denotes the concrete extraction
operation. In Equation (20), we use extractive label fri to form a keyframe set to
represent the input video.

When dealing with video clips, we use video skim to help recognize the importance
of each frame. Video skim consists of a collection of video clips extracted from the
original video. These video clips are of significantly shorter duration. The video skim
S is defined as follows:

S = Fskim(Video) = fr1

⊙
fr2

⊙
· · ·

⊙
frσ

, (21)

where
⊙

is the excerpt assembly and integration operation.

5.2. Keyframe Ratio

In an important feature-extraction mechanism, we set a ratio, θ , over the number of
the video frames or video clips as a constraint to guarantee a suitable output number in
order to reduce overload. This method is suitable for a resource shortage environment
such as mobile Internet.

We now address the problem of how to set the ratio. Actually, the problem can be
viewed as an optimization problem of finding a suitable set R = r1, r2 . . . , rσ , which can
represent the video using the least frames or clips. We summarize the optimization
problem as

r1, r2, . . . , rσ = arg minri {D(R, F)|1 ≤ ri ≤ n} (22)

σ = θ · n, (23)

where n is the number of frames or clips in the original video sequence, σ is the total
number of keyframes or clips, D is a dissimilarity measure, and F is the output of the
classification module.

5.3. Minimum Correlation Among Keyframes or Video Clips

Next, we analyze how to find a suitable set that can represent the video using the least
frames or clips. Because the input, frames or clips, are always sequential elements, we
consider making use of the correlation among them to finish key element extraction.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:12 K. Wang et al.

Therefore, we introduce minimal correlation to solve the problem. The minimal correla-
tion method is select frames or clips that are dissimilar to each other and can represent
the video with the least elements. Introducing the concept of minimal correlation, we
can rewrite Equation (21) as

r1, r2, . . . , rσ = arg minri {Corr(fr1 , fr2 , . . . , frσ
)}, (24)

where Corr is a correlation computing operation.
When we consider pairs of frames or clips to simplify the entire set, Equation (22)

can be formulated as

Corr(fr1 , fr2 , . . . , frσ
) =

⎧⎨
⎩

k−1∑
i=1

k∑
j=i+1

corr(fri , frj)
2

⎫⎬
⎭

1/2

, (25)

where Corr(fri , frj) is the correlation coefficient of any two frames or clips (fri , frj).
In this article, we take sequential elements into consideration, and Equation (24)

can be written as

{r1, r2, . . . , rσ } = arg minri

{
σ−1∑
i=1

corr(fri , fri+1)

}
. (26)

However, the extraction of keyframes or clips based on these equations endeavor to
maximize the difference of each frame or clip rather than simply reduce the total
number.

ALGORITHM 2: Load-Reduction Module, Scene Change

1 Inputs fri , A
2 Procedure:
3 Begin
4 While (i < n)
5 If (Corr(fri) < A)
6 enter into scene+1
7 Else
8 still in scene
9 End if
10 End while

In the model’s load-reduction module, a reliable keyframe extraction mechanism is
applied to recognize the importance of each frame or clip. The specific implementation
process of the mechanism is presented in Algorithms 2 and 3. Algorithm 2 mainly judges
whether the scene changes or not and Algorithm 3 emphasizes the load reduction. In
the pseudo-codes, what we first recognize is the scene change, because different scenes
have different thresholds. Through correctly recognizing scene changes or not, we can
improve the final performance. What’s more, if continuous frames are all in the same
scene, we classify these frames into a group and distribute each group a threshold η.

6. PERFORMANCE EVALUATIONS

In this section, the performance of the hybrid-stream model is verified. In the first part,
we introduce the dataset used in this model. Then, the performance of hybrid-stream
model is analyzed and compared to the existing related models. Finally, performance

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:13

ALGORITHM 3: Load-Reduction Module, Keyframe Extraction

1 Input fri

2 Procedure:
3 Begin
4 η = α

∑
f/k

5 While (scene has not changed)
6 If (fri > η)
7 drop the frame
8 Else
9 store the frame in set S
10 End if
11 End while

comparisons with Basic CNN, Temporal stream ConvNet, and the Two-stream model
are demonstrated [Xia et al. 2016; Ye et al. 2015].

6.1. Dataset in the Simulation

Our works aim to evaluate the hybrid-stream model in different datasets, includ-
ing UCF-101, UCF-101 Expand, CCV, and HMDB-51, and prove the superiority and
adaptability of this model compared with other models, such as the basic CNN model,
Temporal stream ConvNet model, and Two-stream model. We briefly introduce the
datasets, as follows.

UCF-101 is an action-recognition dataset [Soomro et al. 2012] which consists of 101
action categories. With 13320 videos from these action categories, UCF-101 presents
the largest diversity in terms of actions.

UCF-101 Expand is an extension of UCF-101. We perform some image transforma-
tion such as fuzzification and distortion, then add the transformed videos to the original
dataset. The expanded dataset aims to prevent overfitting.

CCV is a new database [Jiang et al. 2011] containing 9317 YouTube videos over 20
categories. The database mainly emphasizes people’s interests and originality of video
content. These videos have little textual annotation and can also apply for automatic
content analysis techniques.

HMDB-51 is a large human motion database [Kuehne et al. 2011]. The dataset
contains 6849 clips, which can be divided into 51 action categories; each category
contains at least 101 clips. The videos are collected from various sources: most of them
are from movies and the rest are from public databases, such as YouTube and Google
videos.

Among the four datasets, the main differences between them are that these videos’
sources are different and each dataset has different action categories. These differences
can present the largest diversity of processed videos.

6.2. Simulation Setup

There are two key parameters in our model: σ and η. Specially, σ is a dynamic parameter
that changes with the length of the video:

σ = Timevideo

Timesampling
,

where Timevideo is the duration of the input video, and Timesampling is the sampling time.
The bigger the Timesampling, the more video frames or clips we will obtain. In addition,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:14 K. Wang et al.

η is also a dynamic parameter that changes according to correlation among frames:

η =
∑

Importance frame

number
,

where Importance frame is processed frame’s importance, which ranges from 0 to 1, and
number refers to several correlative frames’ number.

In simulations, we adjust parameter σ to control the size of the processed video and
adjust parameter η to decide the dynamic threshold. The size of video clips is associated
with parameter σ ; the greater parameter σ is, the more video frames are contained
in video clips. However, only when choosing a suitable parameter σ can the result’s
accuracy can be improved. In addition, parameter η is key to ensuring effective load
reduction and better quality of experience (QoE).

The inputs are fixed to the size of 214×214. In contrast to a two-dimensional feature
map in the conventional layer, we add a time dimension based on the two-dimensional
feature map to process real-time videos. Therefore, we have two different inputs. The
first input is video frames (single images); the second input is video clips (several
continuous frames).

In the following simulation, we change several parameters in the classification algo-
rithm to compare the algorithm’s classification precision in different architectures. We
also compare the model’s performance in different datasets. Finally, we compare our
model with other existing models. In this section, we emphasize classified precision
comparison.

6.3. Simulation Results

In this section, we first compare our model in different architectures. We use UCF-101
as the dataset of our classified precision comparison. In Table II, we set three different
groups of parameters in architectures A, B, and C to compare our model’s accuracy in
UCF-101 1 to 4 and 4 to 8 classifications. These parameters include the size of con-
volution kernel (Filter), the number of feature map (Nf), channels, pooling size, and
input and output dimension (In and Out). Each architecture has four layers (Figure 1):
Convolutional layer and Pooling layer (here, we combine them as Conv-Pooling layer),
Fully connected layer, and Feature Extraction layer. In the table, it shows that the more
Conv-Pooling Layers the architecture has, the higher accuracy the result acquires. In
addition, the size of convolution kernel (Filter) also affects the accuracy of results: a rel-
atively bigger size of convolution kernel (Filter) acquires better results on accuracy at
the cost of time consumed. In general, when suitable parameters are selected, our clas-
sification algorithm has a good accuracy: around 90%. As a result, higher classification
precision is helpful to the following load-reduction operation.

Next, we analyze the model’s performance in different datasets. UCF-101, UCF-
101 Expand, HMDB-51, and CCV are four different datasets that we use to make
comparisons. As Figure 2 shows, our method has a good performance on the whole, and
is basically superior to other models on the same dataset.

Then, we compare our model with other existing models or algorithms, and show our
model’s performance.

Receiver operating characteristic (ROC) is a kind of image used to describe sensitivity.
In the simulation, based on the datasets UCF-101 and UCF-101 Expand, we use true-
positive rate (TPR) and false-positive rate (FPR) of ROC to compare our method with
the basic CNN model and Support Vector Machine (SVM).

Figure 3 shows the classification performance of our methods, Basic CNN and SVM.
The various parameter settings can be seen in architecture A in Table II. As can be
seen, for the same dataset, our method has a better approach to the coordinate (0, 1),
which is usually called as a perfect classifier. Meanwhile, the approaching speed of our

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:15

Table II. Different Architectures for Classification

Architecture Layer Param Value Accuracy 1 to 4 Accuracy 4 to 8
Filter 5*7*8

Nf 20
Conv-Pooling Layer 1 Channels 3

Pooling size 2*2
Filter 5*8*5

Conv-Pooling Layer 2 Nf 40
A Channels 20 91.30% 88.60%

Pooling size 2*2
Fully connected Layer In 2400

Out 50
Feature Extraction Layer In 50

Out 4
Filter 5*7*4

Nf 20
Conv-Pooling Layer 1 Channels 3

Pooling size 1*1
Filter 5*7*4

Conv-Pooling Layer 2 Nf 20
Channels 20

Pooling size 2*2
Filter 5*7*4

B Conv-Pooling Layer 3 Nf 40 92.80% 90.10%
Channels 20

Pooling size 2*2
Fully connected Layer In 6160

Out 50
Feature Extraction Layer In 50

Out 4
Filter 5*7*5

Nf 20
Conv-Pooling Layer 1 Channels 3

Pooling size 1*1
Filter 5*7*5

Conv-Pooling Layer 2 Nf 20
Channels 20

Pooling size 2*2
Filter 5*7*5

Conv-Pooling Layer 3 Nf 40 92.60% 90.30%
C Channels 20

Pooling size 2*2
Fully connected Layer In 6160

Out 50
Feature Extraction Layer In 50

Out 4

method is obviously faster than that of basic CNNs and SVMs. However, our method
achieves an improvement in classification accuracy.

The performance measures that we used are precision, recall, and scaled Area Under
the Curve (AUC) at different values of FPRs [Ji et al. 2013]. The average performance
is shown in Figure 4. Under lower FPRs, we can see from Table III a higher average per-
formance on Precision and lower average performance on Recall and AUC. When under
the same FPR, our method outperforms the 2D-CNN, and has a similar performance

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:16 K. Wang et al.

Fig. 2. Comparisons among different models under different datasets.

Fig. 3. Comparisons among basic CNN, SVM, and our method under (a) UCF-101 and (b) UCF-101 Expand.

with the 3D RCNN and 3D CNN. The specific data information is presented in
Table III.

The performance of the load-reduction module is shown in Figure 5. The figures are
both a 10s video clip cut from two different videos. The main difference between them
is that the first video has an obvious scene change and the other only has a single
scene. In Figure 5, we use two colors to distinguish two scenes. Since we use different
dynamic threshold η to represent different scenes, it is important to first recognize

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:17

Fig. 4. Average performance comparison of the four methods under different FPRs.

Table III. Detailed Comparisons of Our Method and Three Other Models under Different FPRs

Method FPR Measure CellToEar ObjectPut Pointing Average
Precision 0.5717 0.7348 0.8380 0.7148

0.1% Recall 0.0211 0.0348 0.0169 0.0243
AUC (∗103) 0.0114 0.0209 0.0096 0.0139

3D − RCNNS
332 Precision 0.3917 0.5384 0.7450 0.5584

1% Recall 0.1019 0.1466 0.0956 0.1147
AUC (∗103) 0.6272 0.9044 0.5665 0.6993
Precision 0.6433 0.6748 0.8230 0.7137

0.1% Recall 0.0282 0.0256 0.0152 0.0230
AUC (∗103) 0.0173 0.0139 0.0075 0.0129

3D − CNNS
332 Precision 0.4091 0.5154 0.7470 0.5572

1% Recall 0.1109 0.1356 0.0931 0.1132
AUC (∗103) 0.6759 0.7916 0.5581 0.6752
Precision 0.3842 0.5865 0.8547 0.6085

0.1% Recall 0.0097 0.0176 0.0192 0.0155
AUC (∗103) 0.0057 0.0109 0.0110 0.0092

2D − CNN Precision 0.3032 0.3937 0.7446 0.4805
1% Recall 0.0505 0.0974 0.1020 0.0823

AUC (∗103) 0.2725 0.5589 0.6218 0.4844
Precision 0.5817 0.6944 0.8333 0.7031

0.1% Recall 0.0266 0.0288 0.0181 0.0245
AUC (∗103) 0.0151 0.0157 0.0086 0.0131

ours Precision 0.3866 0.5437 0.7896 0.5733
1% Recall 0.1100 0.1372 0.0920 0.1131

AUC (∗103) 0.6681 0.9189 0.5734 0.7201
Notes: The superscript s represents that the five channels are convolved separately; the
subscript 332 represents that the first two convolutional layers use 3D convolution and the
last convolutional layer uses 2D convolution.

scene changes with threshold η. From the two figures, we can visually observe the drop
frames.

Finally, we summarize the average performance of our model in different types of
video. We aim to reduce load on video frames or clips’ correlation. Some videos, such as
talk shows, have a high correlation among frames and clips; these videos have a smaller
load reduction. On the other hand, some videos, such as TV series, have relative low
correlation among frames and clips; these videos have a larger load reduction. In total,
the load reduction of different types of video are shown in Table IV. Different types of
video have a quite different load reduction under our model; the average load-reduction
percentage is about 2.76.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:18 K. Wang et al.

Fig. 5. (a) Two scenes in a 10s video and its drop frames. (b) One scene in a 10s video and its drop frames.

Table IV. Load Reduction in Different Types of Video

Content Size reduction
Cinecolor 1.9%

Black-white 2.6%
Talk show 7.9%
TV series 2.5%

Music video 1.1%
Landscape 2.4%
Technique 2.0%

True man show 0.8%
Situation comedy 3.6%

Average 2.76%

7. CONCLUSIONS

We presented a novel model for enhancing classification precision and reducing network
overload. The model, called the hybrid-stream model, is able to recognize the important
frames and decide whether to drop the unimportant ones. In contrast to conventional
methods, such as deep learning to address the image analysis problem, we improve
the method to deal with video analysis. We formalize the overload problem of videos
as an optimization problem and show a practical algorithm over a large amount of
real-time data. The conducted simulations show that our model performs well in most
of the datasets, in particular for UCF-101 and UCF-101 Expand. The proposed hybrid-
stream model and the improved video-recognition algorithm can lead to fairly good
video streams in mobile Internet. The model can reduce network overload and will not
lower users’ QoE.

REFERENCES

Y. Zheng, B. Jeon, D. Xu, Q. Wu, and H. Zhang. 2015. Image segmentation by generalized hierarchical fuzzy
C-means algorithm. Journal of Intelligent and Fuzzy Systems 28, 2, 961–973.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus, R. Pan, N.
Yadav, and G. Varghese. 2014. CONGA: Distributed congestion-aware load balancing for datacenters. In
Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM’14). ACM, New York, NY, 503–514.

M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. 2010. Hedera: Dynamic flow schedul-
ing for data center networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI’10). 19–19.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

Real-Time Load Reduction in Multimedia Big Data for Mobile Internet 76:19

M. Baktashmotlagh, M. Harandi, B. C. Lovell, and M. Salzmann. 2014. Discriminative non-linear station-
ary subspace analysis for video classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 12, 2353–2366.

B. Chen, H. Shu, G. Coatrieux, G. Chen, X. Sun, and J. Coatrieux. 2015. Color image analysis by quaternion-
type moments. Journal of Mathematical Imaging and Vision 51, 1, 124–144.

D. Chiang, C. Wang, C. Chen, and W. Lo. 2015. Scheduling management for multiple real-time data over
on-demand mobile environments. In Proceedings of IEEE International Conference on Mobile Services
(MS’15). IEEE, New York, NY, 383–390.

M. Dong, T. Kimata, K. Sugiura, and K. Zettsu. 2014. Quality-of-experience (QoE) in emerging mobile social
networks. IEICE Transactions on Information and Systems 97, 10, 2606–2612.

M. Dong, H. Li, K. Ota, and J. Xiao. 2015. Rule caching in SDN-enabled mobile access networks. IEEE
Network 29, 4, 40–45.

M. Dong, X. Liu, Z. Qian, A. Liu, and T. Wang. 2015. QoE-ensured price competition model for emerging
mobile networks. IEEE Wireless Communications 22, 4, 50–57.

Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang. 2015. Enabling personalized search over encrypted out-
sourced data with efficiency improvement. IEEE Transactions on Parallel and Distributed Systems.
DOI:10.1109/TPDS.2015.2506573

B. Gu and V. Sheng. 2016. Structural minimax probability machine. IEEE Transactions on Neural Networks
and Learning Systems. DOI:10.1109/TNNLS.2016.2544779

G. Han, W. Que, G. Jia, and L. Shu. 2016. An efficient virtual machine consolidation scheme for multimedia
cloud computing. Sensors 16, 2, Article 246.

A. Hava, Y. Ghamri-Doudane, M. Muntean, and J. Murphy. 2015. Increasing user perceived quality by
selective load balancing of video traffic in wireless networks. IEEE Transactions on Broadcasting 61, 2,
238–250.

K. He, X. Zhang, S. Ren, and J. Sun. 2015. Spatial pyramid pooling in deep convolutional networks for visual
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 9, 1904–1916.

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. 2015. Presto: Edge-based load balancing
for fast datacenter networks. In Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication (SIGCOMM’15). ACM, New York, NY, 465–478.

P. Hernandez. 2010. Statistical analysis of network traffic for anomaly detection and quality of service
provisioning. Ph.D. dissertation, Computer Science, Telecom Bretagne (ENST Bretagne), Brest, France.

O. H. Hussein, T. N. Saadawi, and M. Jong Lee. 2005. Probability routing algorithm for mobile ad hoc
networks’ resources management. IEEE Journal on Selected Areas in Communications 23, 12, 2248–
2259.

S. Ji, W. Xu, M. Yang, and K. Yu. 2013. 3D convolutional neural networks for human action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1, 221–231.

Y. Jiang, G. Ye, S. Chang, D. Ellis, and A. C. Loui. 2011. Consumer video understanding: A benchmark
database and an evaluation of human and machine performance. In Proceedings of ACM International
Conference on Multimedia Retrieval (ICMR’11). ACM, Italy.

A. Karpathy, G. Toderici, S. Shetty, and T. Leung. 2014. Large-scale video classification with convolutional
neural networks. In Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’14). IEEE, Columbus, 1725–1732.

R. Kroon. 2002. Dynamic vehicle routing using ant based control. Masters Thesis, Delft University of Tech-
nology, Delft, The Netherlands.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. 2011. HMDB: A large video database for human
motion recognition. In Proceedings of IEEE International Conference on Computer Vision (ICCV’11).
IEEE, Barcelona, 2556–2563.

A. Lakhina, M. Crovella, and C. Diot. 2005. Mining anomalies using traffic feature distributions. In Proceed-
ings of the 2005 Conference on Applications, Technologies, and Protocols for Computer Communications
(SIGCOMM’05). ACM, New York, NY, 217–228.

S. K. Lee, S. Yoo, J. Jung, H. Kim, and J. Ryoo. 2015. Link-aware reconfigurable point-to-point video streaming
for mobile devices. ACM Transactions on Multimedia Computing Communications and Applications 12,
1, Article 9.

J. Li, X. Li, B. Yang, and X. Sun. 2015. Segmentation-based image copy-move forgery detection scheme. IEEE
Transactions on Information Forensics and Security 10, 3, 507–518.

B. T. Morris and M. M. Trivedi. 2008. Learning, modeling, and classification of vehicle track pattern from
live video. IEEE Transactions on Intelligent Transportation System 9, 3, 425–437.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

76:20 K. Wang et al.

I. Mrazova and M. Kukacka. 2008. Hybrid convolutional neural networks. In Proceedings of the 6th IEEE
International Conference on Industrial Informatics IEEE, Indin, 469–474.

Z. Pan, Y. Zhang, and S. Kwong. 2015. Efficient motion and disparity estimation optimization for low com-
plexity multiview video coding. IEEE Transactions on Broadcasting 61, 2, 166–176.

T. Qin, X. Guan, W. Li, and P. Wang. 2009. Monitoring abnormal traffic flows based on independent component
analysis. In Proceedings of IEEE International Conference on Communications (ICC’09). IEEE, Dresden,
1–5.

T. Qin, X. Guan, and Q. Huang. 2010. Characteristic measurement of the connection degree for network
monitoring. In Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA’10).
IEEE, Jinan, 147–151.

F. Rango and M. Tropea. 2009. Swarm intelligence based energy saving and load balancing in wireless ad
hoc networks. In Proceedings of the 2009 Workshop on Bio-inspired Algorithms for Distributed Systems
(BADS’09).ACM, New York, NY, 77–84.

K. Simonyan and A. Zisserman. 2014. Two-stream convolutional networks for action recognition in videos.
In Proceedings of the Conference on Neural Information Processing System (NIPS’14). 568–576.

R. Song and F. Liu. 2014. Real-time anomaly traffic monitoring based on dynamic k-NN cumulative-distance
abnormal detection algorithm. In Proceedings of the 3rd International Conference on Cloud Computing
and Intelligence System (CCIS’14). IEEE, Shenzhen, 187–192.

K. Soomro, A. R. Zamir, and M. Shah. 2012. UCF101: A dataset of 101 human action classes from videos in
the wild. CRCV-TR-12-01.

B. Truong and S. Venkatesh. 2007. Video abstraction: A systematic review and classification. ACM Transac-
tions on Multimedia Computing, Communications, and Applications 3, 3, Article 3.

K. Wang and Y. Yu. 2013. A query-matching mechanism over out-of-order event stream in IoT. International
Journal of Ad Hoc and Ubiquitous Computing 13, 3/4, 197–208.

K. Wang, H. Lu, L. Shu, and J. Rodrigues. 2014. A context-aware system architecture for leak point detection
in the large-scale petrochemical industry. IEEE Communications Magazine 52, 6, 62–69.

K. Wang, H. Gao, X. Xu, J. Jiang, and D. Yue. 2015. An energy-efficient reliable data transmission scheme
for complex environmental monitoring in underwater acoustic sensor networks. IEEE Sensors Journal
16, 11, 4051–4062. DOI:10.1109/jsen.2015.2428712.

H. Wang, M. Chan, and T. Ooi. 2015. Wireless multicast for zoomable video streaming. ACM Transactions
on Multimedia Computing, Communications, and Applications 12, 1, Article 5.

K. Wang, Y. Shao, L. Shu, G. Han, and C. Zhu. 2015. LDPA: A local data processing architecture in ambient
assisted living communications. IEEE Communications Magazine 53, 1, 56–63.

K. Wang, Y. Shao, L. Shu, Y. Zhang, and C. Zhu. 2016. Mobile big data fault-tolerant processing for eHealth
networks. IEEE Network 30, 1, 36–42.

K. Wang, L. Zhuo, Y. Shao, D. Yue, and K. F. Tsang. 2016. Towards distributed data processing on intelligent
leakpoints prediction in petrochemical industries. IEEE Transactions on Industrial Informatics PP, 99,
1. DOI:10.1109/TII.2016.2537788, 2016.

F. Xia, L. T. Yang, L. Wang, and A. Vinel. 2012. Internet of Things. International Journal of Communication
Systems 25, 9, 101–1102.

Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong. 2016. Steganalysis of LSB matching using differences between
nonadjacent pixels. Multimedia Tools and Applications 75, 4, 1947–1962.

H. Ye, Z. Wu, and R. Zhao. 2015. Evaluating two-stream CNN for video classification. In Proceedings of the
5th ACM International Conference on Multimedia Retrieval (ICMR’15). ACM, New York, NY, 435–442.

K. Zhao, W. Rao, Y. Zhang, P. Hui, and S. Tarkoma. 2015. Towards maximizing timely content delivery in
delay tolerant networks. IEEE Transactions on Mobile Computing 14, 4, 755–769.

K. Zeb, B. AsSadhan, J. Al-Muhtadi, and S. Alshebeili. 2014. Volume based anomaly detection using LRD
analysis of decomposed network traffic. In Proceedings of the 4th International Conference on Innovative
Computing Technology (INTECH’14). IEEE, Luton, 52–57.

Y. Zhang, R. Yu, W. Yao, S. Xie, Y. Xiao, and M. Guizani. 2011. Home m2m networks: Architectures, standards,
and QoS improvement. IEEE Communications Magazine 49, 4, 44–52.

Received December 2015; revised January 2016; accepted February 2016

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 12, No. 5s, Article 76, Publication date: October 2016.

