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The medicine adherence in Parkinson’s disease (PD) treatment has attracted tremendous attention due to the critical conse-
quences it can lead to otherwise. As a result, clinics need to ensure that the medicine intake is performed on time. Existing
approaches, such as self-report, family reminder, and pill counts, heavily rely on the patients themselves to log the medicine
intake (hereafter, patient involvement). Unfortunately, PD patients usually sufer from impaired cognition or memory loss,
which leads to the so-called medication non-adherence, including missed doses, extra doses, and mistimed doses. These
instances can nullify the treatment or even harm the patients. In this paper, we present PDMove, a smartphone-based passive
sensing system to facilitate medication adherence monitoring without the need for patient involvement. Speciically, PDMove

builds on the fact that PD patients will present gait abnormality if they do not follow medication treatment. To begin with,
PDMove passively collects gait data while putting the smartphone in the pocket. Afterward, the gait preprocessor helps extract
gait cycle containing the Parkinsonism-related biomarkers. Finally, the medicine intake detector consisting of a multi-view
convolutional neural network predicts the medicine intake. In this way, PDMove enables the medication adherence monitoring.
To evaluate PDMove, we enroll 247 participants with PD and collect more than 100,000 gait cycle samples. Our results show
that smartphone-based gait assessment is a feasible approach to the AI-care strategy to monitor the medication adherence of
PD patients.
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Fig. 1. PDMove can continuously collect and analyze the gait of PD patients in a passive and non-disturbing

manner to achieve medication adherence monitoring in daily life.

1 INTRODUCTION

The diagnosis of Parkinson’s disease (PD) initiates a long and periodic therapeutic exchange between the patient
and physician. Once the treatment begins, the patients anticipate systematic improvement while physicians
expect medication adherence. A dedicated medication adherence allows the physicians to accurately adjust the
treatment based on the patient’s clinical response. In contrast, non-adherence due to missed, mistimed or extra
doses leads to increase in parkinsonism, e.g., motor luctuations. Several studies from NIH show that more than
40% of PD patients in the U.S., however, do not adhere to their assigned medication. This non-adherence in PD
leads to signiicantly higher mean of yearly hospitalizations (2.3 vs. 1.8), oice visits, and ancillary care visits [1].
Furthermore, non-adherence is associated with higher medical costs ($15,826 vs. $9,228 per subject per annum)
despite lower prescription medicine costs [2], which can ultimately prevent the patients from afording proper
medical treatment.

In real practice, achieving a high medication adherence among PD patients is a challenging task. Firstly, disease
progressing is one relevant factor. In the early stage, patients are diligent in taking prescribed drugs 3∼4 times per
day. However, as the treatment progresses, they are required to take drugs 6∼10 times per day. Greater regimen
complexity is observed to profoundly impair medication adherence, which drops sharply with each incremental
dose in daily life [3, 4]. Secondly, as a non-motor PD symptom, depression is considered as a signiicant risk factor
for medication adherence. The non-adherence aggravates depression while depression fuels non-adherence [5].
Lastly, cognitive impairment, e.g., dementia, afects at least 40% of PD patients [6]. Dementia impairs the patient’s
working memory and executive function, resulting in missed dose or overdosage in daily life [7, 8]. To summarize,
the non-adherence caused by PD symptoms presents a knowledge gap between patients and physicians, i.e.,
patients cannot recall or validate the medicine intake events due to which physicians cannot proactively suggest
improvements in the treatment process.
A practical approach to facilitate medicine intake detection would serve as the irst milestone for improv-

ing medication adherence. Existing methods in the clinical domain are primarily based on self-management
strategy [9]. Considering most of the PD treatment happens outside the clinics, PD patients are encouraged to
put efort into remembering their medicine intake periods. However, these self-management strategies do not
possess speciic measures to validate the intake events or improvement in adherence other than relying on the
patient’s verdict. Solutions ofering timely reminders (e.g., third-party phone call or alarm [10]) are inadequate
for PD patients sufering from cognitive impairment [11], who are more likely to sufer from mistimed or severe
overdosage. This raises a question. Once the physicians have assigned a drug schedule to the patients, how can
they verify the day-to-day occurrences of medicine intake events?
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We envision a novel AI-care strategy which can assist in the PD treatment by taking advantage of mobile
technologies. The AI-care strategy relieves the daily burden from PD patients of remembering all medicine
intake events. Speciically, it leverages a commercial of-the-shelf smartphone to monitor medication adherence
without the user’s awareness. The periods and frequency of intake activities are compared against the drug
schedule assigned by the physicians to determine the mistimed, missed and extra doses. Afterward, the results
from medicine intake detection, along with the medication efectiveness measurement, are transferred to the
clinics automatically. In summary, we believe a practical solution should own three properties:

• Continuous Monitoring: PD is a chronic disease and most of the treatment happens outside the clinics.
Therefore, continuous monitoring of medication adherence will allow the analysis of extended trends of
patient’s clinical response.
• Passive Sensing: Considering PD treatment is a long-term process, it would be ideal to passively assess
the daily-life medicine intake without user participation or external supervision.
• Non-adherence Alerting: To be practical in real-world setups, the proposed solution should detect and
remind the users any occurrence of non-adherence, including missed, mistimed, and extra doses.

Given the fact that gait impairments are among the most common PD symptoms and actively respond to
medication, we aim to detect daily-life gait variability caused by medicine to achieve medication adherence
monitoring. For evaluating the gait metrics, instead of asking the user to perform a test (e.g., Timed Up and Go
Test [12]), we hypothesize that gait variability can be efortlessly acquired by putting the smartphone in user’s
pocket, a common behavior in daily life. Considering that pocket is not the most sensitive body part to gait
abnormality in comparison with other regions (e.g., ankle, hip and low back [13]), we propose a deep learning-
based method to automatically extract the features from raw data. These features vary from common-sense
features (e.g., speed and step length) and are highly correlated to PD symptoms. To validate the hypothesis, we
design and implement PDMove, a smartphone-based passive sensing system for medication adherence monitoring
as shown in Fig. 1. It comprises a smartphone end and a cloud-server end. At the smartphone end, PDMove

leverages the built-in sensors, i.e., accelerometer and gyroscope, to collect the gait and transmit the raw data to
the cloud-server for further analysis. At the cloud-server end, the gait analyzer module irst achieves the gait
cycle segmentation and spectrogram representation in order to augment features in both the time domain and
frequency domain. Afterward, the medication adherence detector consisting of a multi-view convolutional neural
network facilitates medicine-intake detection. Finally, the cloud-server feedbacks the detection results to the user.

We collaborate with medical centers and enroll suicient PD patients to evaluate PDMove in real life. Speciically,
we develop an iOS application on the smartphone to collect raw gait data. We instruct the user to place the
smartphone in the pocket and go strait some 20 steps before and after taking medication for PD treatment.
Through a 3-month experiment, we totally enroll 247 PD patients (154 males and 93 females) and collect more
than 100,000 samples of gait cycle. Results show that we can achieve a median accuracy of 83.4% and an average
accuracy of 77.6%. We further validate the cross-patient generalizability of PDMove against three demographic
factors (i.e., age, gender and phone type) and two medical criteria (i.e., severity and surgery) to demonstrate that
PDMove is practical and can be applied in real-world scenarios without any additional components or design
modiications. Our indings can drive future research on improving medication adherence in not only PD patients
but across clinical domain.
We conclude our contributions as follows:

• To the best of our knowledge, we perform the irst study to identify that medication-caused gait variability
is an efective indicator of medicine intake events among the PD patients. We assess the gait patterns of PD
patients before and after taking medication through the on-board sensors of the commercial of-the-shelf
smartphone. The acquired gait patterns also provide valuable insights into medication efectiveness which
can aid the physicians in designing future treatment routines.
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Fig. 2. Medicine non-adherence introduces the gait variability of PD patients in daily life.

• We design and implement PDMove, a passive-sensing system for continuous monitoring of medication
adherence. We hypothesize that the gait variability of a PD patient can be efortlessly acquired in daily
routine, such as placing the smartphone inside the pocket. To validate the hypothesis, we design and
implement a deep neural network based approach, which automatically extracts high-level features that
are highly correlated to gait variability, and can eventually predict whether the PD patient receives the
medication care regularly. Thus, we can infer the medicine intake activity and notify the patient if necessary.
• We evaluate our proposed PDMove on a dataset collected from a daily-life scenario. Our results reveal that
diference presented in gait before and after taking medication is an efective biomarker to detect medicine
intake. This discovery paves the way for a new approach to PD medication adherence monitoring in daily
life. Our system also paves the way for passive sensing in other related healthcare areas.

2 BACKGROUND

2.1 Gait Analysis: Definitions and Methods

Gait describes a particular manner of walking. Every person has his or her way of walking. Factors, such as aging,
injuries, and chronic disease, can result in a slightly diferent walking styles, either permanent or temporary.
For example, elders usually have a reduced range of hip motion at faster walking speeds and 5 degrees less hip
extension than in their younger age. Gait analysis is a method for assessing biomechanical abnormalities in a gait
cycle, which is usually deined as a period of movements, during which one-foot contacts the ground twice. One
gait cycle consists of two phases i.e., the stance phase and swing phase. The stance phase is a period when the
foot contacts with the ground, and the swing phase is a period when the foot is not in contact with the ground.
The stance phase can be further divided into several stages. It starts when the heel strikes and inishes when the
foot toe leaves the ground. The stance phase is usually longer than the swing phase.
The approaches of gait analysis can be classiied into three categories [14]. (1) Vision sensor based: In vision

based approaches, gait data is collected by cameras. Then, some computer vision based algorithms, such as
background segmentation, are adopted to extract the skeleton information. (2) Floor sensor based: In the loor
sensor based approach, the sensors are placed along the loor (e.g., on a mat) where gait data is measured when
people walk across. (3) Wearable sensor based: In the wearable sensor based approach, people attach the sensors
(e.g., accelerometer and gyroscope) in diferent body positions for collecting gait information, such as waist,
pockets, shoes and so forth. Our system belongs to the wearable sensor based approach. We utilize the smartphone
to collect gait by putting it in the pocket.
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2.2 PD-induced Gait Impairment

As a chronic disease caused by unclear reasons, PD afects the way a person walks. In the beginning, PD causes
death of neurons in the substantia nigra areas. These neurons are responsible for producing dopamine, a chemical
messenger transmitting signals from the substantia nigra to other parts of the brain. After the dopamine gets
reduced, the signals controlling the movements cannot be fully carried to proper body regions. As a result, gait
abnormality occurs.

The gait abnormality can be further divided into three phenotypes: (1) Freezing of gait: Freezing of gait (FOG)
is considered as one of the most disabling motor symptoms in PD patients. It is characterized by a reduction of
forwarding movement, or diiculties when initiating walking [15]. PD Patients report that they have diiculty in
initiating muscle movements, when they either start walking or slow down. When the disease progresses, FOG
can even lead to a fall and a loss of independence. (2) Shuling gait: Clinical medicine deines shuling gait as if a
person is dragging his feet while walking. Speciically, the stride (step length) is short and the arm movement gets
reduced. (3) Festinating gait: Festinating gait is deined if a PD patient owns a quick but short stride. Festinating
gait is also called as Parkinsonian gait, which is the most commonly observed gait symptom in PD.
Clinical medicine nowadays leverages performance-based tests to observe and quantify diferent aspects

of gait. These tests evolve from Uniied Parkinson’s Disease Rating Scale (UPDRS) [16], a standard clinical
diagnosis for Parkinson’s disease. For example, Timed Up and Go Test [12] can measure the functional mobility
to provide information on transitions, gait metrics (e.g., speed and stride length), and risk of falling. Levodopa
and other antiparkinsonian drugs (e.g., dopamine agonists and inhibitors of dopamine metabolism) are employed
for alleviating PD symptoms. However, gait abnormality can occur when missed or mistimed dose happens (see
Fig. 2). Given the fact that medication relieves gait symptoms and the non-adherence of medication induces gait
abnormality, we are motivated to monitor such daily-life gait variability to achieve the detection of medicine
intake.

3 PDMOVE

In this section, we present an overview of PDMove, including the application scenario and system diagram (see
Fig. 3).

3.1 Application Scenario

PDMove builds on the fact that Parkinsonism gait abnormality responds to the medication. It works by putting a
smartphone in the pocket with no special requirements, a universal behavior existing in our daily routine. A
smartphone can continuously sense the gait information, and the active participation of the users is not required.
In this way, PDMove enables passive sensing. The system consists of a smartphone end and a cloud-server end,
where the smartphone collects and transmits the raw gait data to the cloud server, and the cloud-server is then
responsible for analyzing the data and feeding back the results to the smartphone. Based on a drug schedule
assigned by the healthcare provider, the smartphone reminds the user to take medicine or informs the next
medication time. Through this method, PDMove helps the patients to avoid the missed, mistimed, or extra doses.

3.2 PDMove System Overview

Gait Collector: Data collection are conducted in a nonclinical daily-life environment (e.g., at home or oice).
Our system utilizes the built-in inertial sensors (i.e., accelerometer and gyroscope) of a smartphone to collect
gait information which responses to medicine medication for PD patients. The detailed descriptions of the data
collection are provided in Section 6.

Gait Preprocessor: We implement a gait preprocessor including the module of gait cycle segmentation and
gait representation. To begin with, we are responsible for dealing with the raw data by removing the irrelevant
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Fig. 3. Our proposed PDMove framework consists of the smartphone end and the cloud-server end. In the former

end, we passively collect the gait patern in the user’s daily activities. In the later end, we develop a specialized

deep-learning network to predict the medicine intake activity and notify the user if he/she doesn’t follow the

clinic’s treatment properly.

part and segmenting the data with a gait cycle. Then, spectrogram representation is adopted for two reasons. (1)
Spectrogram helps augment the features in the frequency domain as well as in the time domain. (2) Spectrogram
transforms the temporal data into the igure, which its the input architecture of the following deep neural
network.

Medicine Intake Detector: We implement a medicine intake detector to achieve the monitoring of medication
adherence. To begin with, a concatenation layer is responsible for data fusion from diferent sensors. Afterward,
a residual network consisting of convolutional layers and fully-connected layers achieves the medicine intake
detection.

4 GAIT PREPROCESSOR

In this section, we introduce the design and implementation of the gait preprocessor, including gait cycle
segmentation and gait representation.

4.1 Inertial Sensors in a Smartphone

Accelerometer and gyroscope are two types of built-in inertial sensors measuring the inertial dynamics in three
directions, namely the X , Y and Z axis.
Accelerometer: The three-axis accelerometer is built on the basic principle of acceleration, and is used to
measure the orientation of a smartphone’s acceleration (including the gravity) related to the surface of the Earth.
The accelerometer can gauge the orientation of a stationary item with respect to Earth’s surface. In our study, the
three-axis accelerometer measures the change of smartphone’s linear velocity, and thereby relects the movement
of the PD patients.
Gyroscope: Although the accelerometer gauges the acceleration along with a particular direction, it provides
little lateral orientation information with only the reference of gravity direction. Instead, the built-in three-axis
gyroscope senses the angular velocity alone with one direction in the three-dimensional space. In our study, a
PD patient generates both accelerations and rotations in diferent directions while walking. Correspondingly,
gyroscope combined with accelerometer together provides us a powerful array of gait information.

4.2 Gait Cycle Segmentation

After collecting the gait data with built-in accelerometer and gyroscope, we are motivated to extract helpful
information, i.e., gait cycle, for further analysis. The reasons are two folds. First, the walking pattern of a human
presents rhythmic, and an entire gait cycle contains all the helpful information (i.e., the swing phase and the
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zero-phase FIR filter removes the high-frequency components. Red and white shades mark gait cycles.

stance phase) we need. Second, the gait length is diferent from person to person and is varied even for the
same subject in one day. Therefore, the gait cycle segmentation rather than blind segmentation presents the gait
features better.

Before we introduce our solution, we irst deine a complete gait cycle as a time interval, which begins at the
heel strike of one foot and continues until the heal strike of the same foot again. Without loss of generality, we
adopt the data from the built-in accelerometer as a basis for gait cycle segmentation.

Calculation of Magnitude Acceleration: As a smartphone shows random postures when the user puts it in
the pocket, neither axis can stably relect the periodic pattern of the gait. Therefore, the irst step is to calculate
the magnitude signal to remove the orientation-related noise. Assuming that Ax , Ay , and Az are values collected
by a three-axis accelerometer, the magnitude signal A0 can be calculated by:

A0 =

√

A2
x +A

2
y +A

2
z . (1)

Fig. 4 shows the magnitude signal describing the acceleration of the smartphone in the pocket while walking. We
can observe that the smartphone collects the rhythmic pattern. Along with the X -axis, the swing phase achieves
a higher acceleration than the stance phase.

Removal of Motion Artifacts: To extract an entire gait cycle, our solution is to locate the local maximum in
each cycle, which is the swing phase showing the highest acceleration. However, motion artifact can induce
high-frequency burrs contained in the raw curve, which afects the precise segmentation (see Fig. 4). To address
this problem, we ilter out the high-frequency components. Traditional ilters can induce phase distortion, which
can bring bias in the phase of gait cycle segmentation. Therefore, we design and implement a zero-phase ilter to
eliminate this phase distortion [17]. To achieve a zero phase, we require that the frequency response of a ilter
should be a real function. According to the theory of Fourier transform, the frequency response of a ilter is real
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if its impulse response h(n) is even. That is, it satisies

h(n) = h(−n), n ∈ Z. (2)

Then, its frequency response can be presented as:

H (e jωt ) =

∞
∑

n=−∞

h(n)cos(ωnT ) − j

∞
∑

n=−∞

h(n)sin(ωnT ). (3)

As the h is even and the sine function is odd, the sum over the second term is zero. Thereby, we have

H (e jωt ) =

∞
∑

n=−∞

h(n)cos(ωnT ). (4)

To construct an even sequence, the zero-phase ilter leverages the information before and after the current gait
signal point by prepending it the relected piece of the signal onto the input, and carefully chooses the initial
value.

Table 1. The List of FIR Filter Parameters in PDMove.

Name Description

Filter Type Band Pass
Filter Order 139

Stopband Frequency 1 0.5 Hz
Passband Frequency 1 0.75 Hz
Stopband Frequency 2 3 Hz
Passband Frequency 2 4 Hz

Design Method Least Square
Sample Rate 100

Table 1 presents the detailed parameters while implementing the h(n). Considering the average preferred
walking speed is 1.4m/s [18], we implement a bandpass ilter with a passband from 0.75 Hz to 2.25 Hz to eliminate
motion artifacts which are unrelated to gait cycles. We speciically choose the ilter type of inite impulse response
(FIR). Compared with ininite impulse response (IIR) ilter, FIR can achieve faster transition attenuation by simply
increasing the ilter orders while keeping stability.

Algorithm 1 Gait Cycle Segmentation

Input: Ax ,Ay ,Az ▷ Collected Accelerometer Data
Output: H = {Hi |i = 1, · · · ,N }
1: for i = 1→ S do:
2: A

(j)
0 ← ComputMaд(A

(j)
x ,A

(j)
y ,A

(j)
z ) ▷ Magnitude Acceleration to Remove Orientation Information

3: A
(j)
0 ← FiltFilt(A

(j)
0 ) ▷ Filter Doubly to Remove High-Frequency Components

4: H← PeakFind(A
(j)
0 , λ) ▷ Segmentation Coordinates Calculation

5: end for

6: return H;
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Extraction of Gait Cycles: After removing the high-frequency burrs in the raw amplitude signal, the next
step is to extract an entire cycle. For this purpose, our solution is to ind each maximum local prominence in
the iltered signal curve. Since the amplitude value of acceleration data can be diferent from person to person,
we normalize the amplitude signal to a range of [−1, 1] to eliminate the inter-person interference. Then, peak
detection is adopted to get the coordinates for segmentation.
Algorithm 1 describes the procedure of gait cycle segmentation. H = {Hi |i = 1, · · · ,N } is a set containing the
coordinates of gait segmentation. Segmentation is performed on each dimension of the raw data collected by
accelerometer (i.e., Ax , Ay , and Az ) and gyroscope (i.e.,Gx , Gy , and Gz ). The bottom part of Fig. 4 is an example
of gait segmentation. Each gait cycle starts with the current swing phase and ends with the next swing phase.

(a) Segmentation Size = 8

Swing 

Phase
Stance Phase

Swing 

Phase

Swing 

Phase
Stance Phase

Swing 

Phase

(b) Segmentation Size = 16 (c) Segmentation Size = 32

Fig. 5. The examples of spectrogram. The X -axis shows the time dimension, and the Y -axis shows the frequency

dimension. The third dimension shows the amplitude of a particular frequency at a specific time represented by

the color. Moreover, the segmentation size of STFT is a trade-of metric between time-frequency resolution.

4.3 Gait Representation

After segmenting the raw data, we now proceed to represent features for medicine intake detection. Since the
data are time series, we adopt time-frequency analysis to extract features, which represents a signal in both
the time and frequency domains simultaneously. We adopt spectrogram as a time-frequency analysis technique
due to two reasons. First, spectrogram provides a high resolution in both time domain and frequency domain.
Second, spectrogram has a low computational complexity which shows the potential for real-time implementation.
The worklow of the calculation of spectrogram can be described as follows. After gait cycle segmentation, a
one-dimensional time series will be represented as follows:

X (m,ω) =

∞
∑

n=−∞

x[n]w[n −m]e−jωn , (5)

where x[n] is a time series of gait data and w[n] is the window function. Accordingly, the spectrogram is an
amplitude spectrum of X (m,ω) :

spectrogram{x(t)}(m,ω) ≡ |X (m,ω)|2. (6)

Fig. 5 shows a couple of examples of the spectrogram of x-dimensional data in accelerometer. The X -axis shows
the time dimension, and the Y -axis shows the frequency dimension. The third dimension shows the amplitude of
a particular frequency at a speciic time represented by the color. We observe that the swing phase contains more
high-frequency components than the stance phase. We can also notice that increasing the segmentation size of
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short time Fourier transform (STFT) increases the resolution in the frequency domain, but reduces the resolution
in the time domain. The inluence of STFT segmentation size is evaluated in Section 7.1.

5 MEDICINE INTAKE DETECTOR

In this section, we introduce the design and implementation of our medicine intake detector, consisting of a
multi-view deep neural network to achieve medicine intake detection.

5.1 Problem Formulation

We formulate the medication intake detection as a binary classiication problem. Rather than quantifying multiple
gait features (e.g., speed, step length and variability) [19] from collected data, we investigate a deep learning-
based approach for twofold reasons. First, deep learning provides us an end-to-end solution without heavy
hand-crafted features engineering. It utilizes the vast parameters in its hidden layers to learn the data distribution
automatically. In this way, deep neural network extracts some high-dimensional features, which are diferent
from these common-sense features but highly correlated with PD symptoms. Second, deep learning utilizes some
activation functions (i.e., Sigmoid and ReLU) to provide the nonlinear ability. In this way, a deep neural network
is considered to provide a better decision boundary than a traditional classiier.
In the case of PDMove, it is an underexplored problem which features are related to gait variability caused

by medication non-adherence. Therefore, deep learning takes its advantages to diferentiate the stages between
before and after taking medication.

5.2 Multi-view Convolutional Neural Network

We introduce the architecture of medicine intake detector, which is a multi-view convolutional neural network
(MVCNN) containing the modules of multi-view data fusion, feature extractor, and medicine intake predictor (see
Fig. 6).
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Multi-view Data Fusion: There are two solutions to handle the multivariate data [20]. One is called ensemble
classiiers (EC). In this way, separate architectures designed for each sensing modality irst learn sensor-speciic
information before their generated concepts are uniied through representations. This concatenates across
all the sensors later in the network. The other one is called feature concatenation (FC) that concatenates the
steams of multiple sensors at the input of the neural network. According to this concatenation architecture,
the EC concatenates the features in the high-dimensional space. In this case, the irst half part of the neural
network can learn the intra-sensor features, and the latter one learns the inter-sensor (across multiple modalities)
features. Instead, hidden layers in FC architectures simultaneously learn intra-sensor and inter-sensor information.
Referring to our system, accelerometer and gyroscope belong to the same sensing modality as both of them
sense the movement of the smartphone. Therefore, we adopt the FC architecture to learn the intra and inter-
sensor features simultaneously. During our implementation, concatenating layer is adopted to concatenate the
spectrograms at the horizontal (time) dimension.

Feature Extractor: We adopt CNN as the feature encoder since CNN utilizes the layers with nonlinear ilters to
share weights among all the locations in the input. Compared with fully-connected layers, the convolutional
layer is sparse, which contains fewer parameters and thereby facilitates depth hidden layers. The convolutional
architecture has shown its superior capability for several content-related tasks (e.g., Face Recognition, Scene
Labelling, and Action Recognition [21]). Speciically, we choose a residual network, which has the shortcut
connection to connect high-dimensional features with low-dimensional ones. The shortcut connections can be
formulated as:

y = F (x , {Wi }) + x , (7)

where F (x , {Wi }) represents the multiple convolutional layers, and F (x , {Wi }) + x represents element-wise
addition. According to He et al. [22], shortcut connections make it easy for the network to learn the identity
function. Speciically, our network contains four residual blocks, each of which contains four 3 × 3 convolutional
layers. Shortcut connection is employed to connect the input and output of each residual block.

Intake Predictor: Given the output of feature extractor, we then adopt an activation function (i.e., Softmax) to
introduce the non-linearity and predict the medicine intake. Afterward, a cross entropy function is employed to
calculate the loss between the predicted label and the ground truth. By minimizing the loss, we inally increase
the conidence of the prediction.

5.3 Personalized Model in Real Life

Despite the powerful performance CNNs has, it requires suicient data to work. Otherwise, the neural networks
are either prone to underitting or overitting, which leads to unsatisfactory results. However, it is usually diicult
to ask a PD patient to provide suicient labeled data in real life. Thereby, how to train a personalized model
with limited data becomes a critical problem for providing medication adherence monitoring. To address this
challenge, we adopt the transfer learning, a technique that a model trained from one task is repurposed to another
related task [23]. In this way, transfer learning allows a deep learning model to work with a small amount of data.
According to existing studies, transfer learning allows the performance improvement when the two tasks are
similar, and the features learned from the irst task are general [24]. In our case, we irst train our model on a
base dataset consisting of multiple subjects. Then, we transfer the learned features to a target PD subject. Given
the fact that two tasks are similar, the learned features from the base dataset can quickly transfer to an individual.
We evaluate the signiicance of transfer learning in Section 7.1.

6 BENCHMARK PREPARATION

In this section, we introduce our benchmark preparation, including the data collection, neural network imple-
mentation, and evaluation metrics.
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6.1 Data Collection

Participants Enrollment: Our study is approved by the WIRB. We collaborate with medical centers to enroll
247 PD patients from the U.S. to join our research. Professional medical centers conirm the PD onset. The ground
truth is evaluated through the Uniied Parkinson’s Disease Rating Scale (UPDRS), a standard clinical diagnosis
for Parkinson’s disease, which requires each subject to take a series of tests, such as speech test, facial expression
test, hand movement test, and gait analysis. Afterward, the physician diagnoses a subject as PD or non-PD
according to the received scores. For each participant, we conduct a demographics survey to record confounding
information such as gender, age, and smartphone usage. These PD patients are all above 50 years old. 154 PD
patients are males, and the rest 93 PD patients are females. Fig. 7 shows the cumulative distribution function
(CDF) of onset information. The year of onset is range from 1 to 47. The median number is ive, and about 30%
patients’ onset time is less than or equal to three years. According to the conclusion from clinical medicine [25],
PD patients are considered as early stages in PD if they are onset less than three years.
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Fig. 7. The CDF graph describes the "Years since Onset" for the PD patients in our dataset. About 50% of patients

are onset longer than six years.

Gait Collection: Data collection is conducted in an uncontrolled daily-life environment. Each participant is
required to install our smartphone APP to collect gait data. Speciically, each participant needs to put the
smartphone in the pocket and walks straight at least for 20 steps (see Fig. 8). During a three-month-long
experiment, we collect 10623 recordings, of which 5507 recordings are collected before taking medication, and the
rest 5116 recordings are collected after taking medication. Our gait cycle segmentation module totally extracts
125689 gait cycles. 65030 samples are labeled as "before taking medication", and the rest 60659 samples are labeled
as "after taking medication".

6.2 Neural Network Implementation

Dataset Split: As we have mentioned in Section 5, the medicine intake detector contains the pre-training phase
and the transfer learning phase. In the pre-training phase, we divide the PD patients into two person-independent
subsets and acquire two pre-training models, respectively. In the transfer learning phase, we transfer the pre-
training model from subset to all the PD patients from the other subset. In this way, we evaluate our system on
every PD patient. For each PD patient, 80% data is used as training, and the remaining 20% data is used as testing.
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Fig. 8. A PD patient is asked to put a smartphone in the pocket and walk straight for 20 steps.

Network Implementation and Training Policy: We implement our neural network in PyTorch. We set up
an initial learning rate of 0.1 when pre-training our model on a base set. We then drop the learning rate to 0.01
when training a model for each individual. We adopt stochastic gradient descent with momentum (SGDM) as
the optimizer. Data augmentation methods are adopted in training, including random resize and crop, random
horizontal lip, and color jitter.

6.3 Evaluation Metrics

We use the following metrics that are widely used in mobile health. We deine the positive class as "after taking
medication".

• Accuracy: Accuracy describes the fraction of samples that are correctly predicted. It is formulated as
accuracy = T P+T N

T P+T N+F P+FN
.

• Precision: Precision is deined as the fraction of predicted after medication samples that people truly take
medicine, i.e., precision = T P

T P+F P
. It measures the robustness of our system against false positives. This

value should be the higher, the better.

• Recall: Recall is deined as the fraction of "after taking medication" samples that are detected over the total
amount of samples taking medicine, i.e., recall = T P

T P+FN
. It measures our system’s ability in detecting all

the samples of "after taking medication" without misses.

7 REAL-WORLD STUDY AND EVALUATION

In this section, we evaluate PDMove on our collected smartphone dataset.

7.1 Evaluation of Medicine Intake Detection

Medicine Intake Detection: Fig. 9 shows the average normalized confusion matrix of medicine intake detection
on a total of 247 PD patients. The positive class is deined as the state after taking medication. The X-axis is the
ground truth, and the Y-axis is the prediction results of our model. According to the formulation introduced in
Section 6.3, PDMove can achieve an average accuracy of 77.6%, an average precision of 0.732, and an average
recall of 0.894, respectively. The recall is higher than precision, showing that our system will be more likely to
predict a given gait cycle sample as "after taking medication".

One reason is that medicine efectiveness can continue from the last medication time. In this case, gait samples
collected before taking medicine can be predicted as "after taking medication". This issue can be addressed
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Fig. 9. The normalized confusion matrix of medicine intake detection. The recall is higher than precision, show-

ing that PDMove has a higher probability to predict a given sample as "ater taking medication".

by setting a time window in real-life usage. A healthcare provider can assign the time window. When a non-
adherence event occurs (i.e., a user forgets to take the medicine in this given window), smartphone reminds user
the medicine intake. From another point of view, our results implicate that PDMove has the potential to achieve
precise medicine. medicine metabolism is well known to vary from person to person, and PDMove shows the
ability to monitor symptom luctuation after medication continuously. With the help of PDMove, these healthcare
providers can customize the precise drug schedule for each PD patient, including medication time and dosage.
This customized drug schedule can further help a patient to reduce the side efects and improve their quality of
life.
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Fig. 10. The CDF graph describes the accuracy of 247 PD patients. One set of the doted lines show that about

50% of PD patients can achieve an accuracy higher than 83.4%.

Scalability Study: We adopt a Cumulative Distribution Function (CDF) graph (see Fig. 10) to describe the
accuracy distribution on a total of 247 PD patients. To better understand the results, we speciically plot two
groups of dotted line in the igure. The irst group describes the median value, showing that more than 50% of PD
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patients achieve an accuracy higher than 83.4%. The second group describes the cases that our system achieves an
accuracy of less than 50%, and we observe that about 8.4% of PD patients fall into this category. This means our
medicine intake detector in PDMove is diicult to diferentiate between before and after taking medication. The
reasons are two folds. First, gait abnormality can vary from person to person. It is hard to diferentiate between
two stages when gait symptoms are not obvious. Second, medicines may have diferent efects on diferent people.
It is hard to diferentiate between these two stages when medicine efectiveness is weak.
Impact of Gait Data Segmentation: Considering that gait cycle segmentation achieves the feature alignment
(i.e., every sample contains a complete gait cycle from current swing phase to next swing phase), we further show
interests to see how it beneits the medicine intake detection. We set up two groups. The irst group implements
the gait cycle segmentation as we introduced in Section 4. Besides, we prepare the second control group based on
the blind segmentation, namely, segmenting the gait data with a ixed duration. Speciically, we evaluate diferent
length by varying the segmentation size from 100 samples to 300 samples with an interval of 100. Every 100
samples mean one second in a real scenario since the sample rate is 100 Hz.
Fig. 11 compares the accuracy of medicine intake detection between the gait cycle segmentation and the

blind segmentation. We observe that the gait cycle segmentation (see Fig. 11, bar with hatched shading) takes
the advantage obviously, of which the average accuracy is about 4% higher than the best case of the blind
segmentation (see Fig. 11, bars without hatched shading). The reason is that one gait cycle is already comprising
all the useful information (i.e., swing phase and stance phase), and therefore, the medication adherence detector
module can efectively learn the gait variability caused by medication. On the contrary, the blind segmentation
can either contain an incomplete gait cycle or non-integral cycles, which afects the convergence of our deep
learning model.

Fig. 11. The comparison of accuracy between the gait cycle segmentation and the blind segmentation (e.g., Blind

100 means to segment gait data every 100 samples). Gait cycle segmentation achieves a higher accuracy as the

feature alignment facilitates deep learning model convergences. The variation of the blind segmentation length

slightly afects the performance.

Impact of STFT Segmentation: As we pointed out above, the segmentation size of short time Fourier transfor-
mation (STFT) is a trade-of metric between time-frequency resolution. Basically, the longer the segmentation
size is, the higher the resolution is in the frequency domain and the lower resolution is in the time domain. This
property motivates us to explore how this factor afects the performance of medicine intake detection. Speciically,
we set up four groups, in which the segmentation size is conigured as 8 samples, 16 samples, 32 samples, and 64
samples, respectively.
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Fig. 12 shows the performance comparison among these four groups. We observe that smaller segmentation
size helps achieve a higher accuracy of medicine intake detection. For example, the accuracy is 77.6% when
segmentation size is 8. However, it drops to 75.3% when we increase segmentation size to 64. This indicates that
it is the time domain resolution rather than the frequency domain that plays a signiicant role in gait features
representation. The reason is that a gait cycle consists of multiple sub-phases, and high resolution in time domain
allows a spectrogram to present more details about the gait features, which facilitates our deep learning model to
have a more precise prediction.

Fig. 12. The impact of STFT segmentation size while implementing spectrogram representation. The longer STFT

segmentation size indicates the higher resolution in the frequency domain but less resolution in the time domain.

The high time domain resolution allows fine division of the walking phase, thereby achieving beter perfor-

mance.

Impact of Transfer Learning: Fig. 13 is an example showing the signiicance of transfer learning for an
individual. We totally collect 56 gait cycles. The X-axis describes the number of epochs. In each epoch, an entire
set of data is passed both forward and backward through our model once. The Y-axis describes the testing loss,
which is calculated every epoch using the criterion of the cross-entropy. The square-marker line describes the
results of our model with the random initialization, and the triangular-marker line shows the results, of which
we in advance pre-train our model on a base set. We observe that the loss without pre-training drops slowly
and get saturated at the 25 epochs. Instead, the loss drops quickly if we pre-train our model on a base dataset in
advance. Transfer learning works when the features from the irst dataset are general, or these two tasks are
correlated. In the case of our study, the two taskes are similiar. The weight distribution its the gait data type
after pre-training, and accordingly, it converges quickly on a speciic individual.

7.2 Influence of Demographic Factors

In this section, we study the inluence of demographic factors on medicine intake detection, including impact of
age, gender, and smartphone, respectively.
Impact of Age: Human gait patterns inevitably change with the increase of age. The so-called aging efect may
afect the detection accuracy of our system. Therefore, we are motivated to explore how age factor can inluence
the performance of our proposed medicine intake detection. As humans become increasingly frail and show
signiicant degeneration after 75 years old [26], we set this age as a boundary to divide the collected dataset into
two groups (age < 75 and age >= 75) and compare the performance.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 123. Publication date: September 2019.



PDMove: Towards Passive Medication Adherence Monitoring of Parkinson’s Disease Using ... • 123:17

0 5 10 15 20 25 30 35 40

Epochs

0

0.2

0.4

0.6
T

e
s
t 
L
o
s
s

With Pretraining

Without Pretraining

Fig. 13. The comparison of test loss of an individual model between the case with and without pretraining on a

base dataset. The model is hard to converge with the random initialization. On the contrary, transfer learning

enables the convergence by repurposing the knowledge from one generalized model to a personalized one.

Fig. 14 compares the accuracy of medicine intake detection between two prepared groups. The central mark
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The outliers are plotted individually using the "+" symbol. We observe that the middle-age group (age < 75)
achieves a median accuracy of 83.8%, which is 11.3% higher than that of the old-age group (age >= 75). These
results implicate that aging afects the medicine-intake detection. The reason is that aging impairs motor ability.
When getting old, humans usually present reduced power in ankle joint that results in low walking speed [27].
Such aging-caused gait impairment can interfere with the medication intake detection. Form the perspective of
our system, the gait features between before and after taking medication are close, and therefore our medicine
intake detector can be more likely to misclassify a sample collected from an elder PD patient.
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Fig. 14. The comparison of accuracy of medicine intake detection between diferent ages. The middle-age group

achieves higher accuracy, indicating that ageing-caused gait impairment can interfere with medicine intake

prediction.

Impact of Gender: Gender, as well as aging, can be another factor that afects the performance of medicine
intake detection. According to previous research [28], females and males usually have a diferent walking pattern
due to diferent skeleton structures. First, a female usually shows a higher walking cadence but shorter length of
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stride than a male. Second, a female has less range of motion in the hip than a male. Such a diference motivates
us to explore the impact of gender-induced variability on medicine intake detection.
Fig. 15 compares the accuracy of medicine intake detection between males and females. We can observe that

our system is general to PD patients with diferent genders. First, males achieve an average accuracy of 77.7%,
and females achieve an average accuracy of 77.2%. Second, the median accuracy of males is 84.5%, and this
value is 81.3% for females. Our results implicate that gender is an independent biological factor. The reason is
that gender-induced gait variability represented in the spectrogram is constant in both before and after taking
medication. When diferentiating between these two stages, back propagation enables our deep learning model
to learn that gait-induced variability contributes little.
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Fig. 15. The comparison of accuracy of medicine intake detection between diferent gender. The performance

(i.e.,median and average accuracy) is close, indicating that gender is an independent biological factor that does

not contribute to the gait diference.

Impact of Smartphone:Considering that the sensor type, sensor deployment, and sensor quality can be diferent
in various smartphones, we further show interests to explore how phone model afects the medicine intake
detection. In our collected dataset, participants mainly adopt iPhone 5 and iPhone 6. The iPhone 5 series consists
of iPhone 5c and iPhone 5s, and the iPhone 6 series consists of iPhone 6 and iPhone 6 Plus, respectively. Table 2
presents the statistics of performance among diferent phone models, from which we observe that the gap between
iPhone 5 and iPhone 6 is close. The average accuracy of the iPhone 6 series is 77.3%, which is only 0.7% lower
than that of iPhone 5 series. This observation further shows that PDMove is a smartphone-independent system,
providing its accessibility and scalability for serving diferent smartphone users in the real world.

7.3 Influence of Medical Confounding Factors

In this section, we further study the inluence of medical confounding factors on medicine intake detection,
including the impact of disease progression and deep brain stimulation (DBS) surgery.

Impact of Disease Progression: Considering that gait problems vary when the disease progresses, we show
interests to understand whether PDMove can continuously monitor the medication adherence for patients in
diferent stages. Previous study concludes that PD can be classiied as the early stage and the mid-stage according
to onset time [25]. The early stage usually refers to a PD patient who is onset within three years, while the
mid-stage refers to a patient who is onset longer than three years.
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Table 2. Impact of Smartphone Series on Medicine intake detection.

iPhone 5 Series iPhone 6 Series

iPhone 5c iPhone 5s Average iPhone 6 iPhone 6 Plus Average

Accuracy (%) 75.2 78.3 78.0 78.1 75.8 77.3

Precision 0.771 0.750 0.750 0.739 0.684 0.721

Recall 0.968 0.888 0.892 0.898 0.903 0.899

Fig. 16 shows the comparison of the accuracy, precision, and recall for PD patients between the early stage
and mid-stage. In our evaluation, we group 76 PD patients into the early stage and rest 171 PD patients into
the mid-stage. Both groups achieve similar results. The gap of accuracy is less than 1%, and the diference in
scores in both recall and precision is less than 0.1. The close performance implicates that PDMove is not sensitive
to changes ensuing with the degree of severity. Even though the disease severity can progress diferently from
person to person, gait impairment is one of the most common symptoms existing in all stages [19]. Our system
can sense relative diferences caused by medication. The results further implicate that PDMove can continuously
monitor the medication adherence for a PD patient from the early to advanced stage.

Fig. 16. The bar graph compares the performance (i.e., accuracy, precision, and recall) of medicine intake detec-

tion between early stages and mid-stage PD patients. The performance of the two groups is close, indicating

that our system can continuously provide user the service of medication adherence when the degree of disease

severity varies.

Impact of Deep Brain Stimulation Surgery: With the progression of disease, PD symptoms can develop
resistance to treatment. As a therapeutic approach, deep brain stimulation (DBS) is adopted to improve the
medicine efectiveness. We are motivated to exploit the impact of DBS surgery on medicine intake detection.
Fig. 17 shows that PD patients who take DBS can respond to medication better. The average accuracy of these
PD patients is 87.8%, which is 10.4% higher than the group of patients without taking surgery. This observation
is consistent with current clinic medicine. The reason is that DBS is responsible for enhancing the response
of motor symptoms to dopaminergic treatment [29]. This kind of change makes it easy for our proposed deep
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learning model to learn a decision boundary to diferentiate between these two stages. Fig. 17 also shows that the
prediction preference of our model gets altered. PD patients without taking surgery usually achieve a higher
value in recall than precision. This result is, however, diferent from PD patients who take the DBS surgery. DBS
helps to achieve a higher precision than recall. The precision for all the PD patients is 1.0, indicating that there
exist no false positive samples.

Fig. 17. The bar graph compares the performance (i.e., accuracy, precision, and recall) of medicine intake de-

tection between patients with and without taking surgery. The patients who take the DBS surgery achieve the

higher accuracy, indicating that DBS surgery improves medication response.

8 RELATED WORK

Related work falls within two areas, including intake activity monitoring and Parkinsonism gait detection.

8.1 Wearable and Mobile Technologies for Intake Activity Monitoring

The intake activity monitoring has attracted much attention in recent years. AutoSense [30] developed a wearable
sensor suite which focuses on detection of physiological signal for inferring onset, causality, and consequences
of stress. Chun et al. [31] developed a wearable sensor to detect the eating activites by tracking the movements
of jawbone. FluidMeter [32] adopted the smartwatch to guage the human daily luid intake. Some work also
focuses on how to increase the user adherence of medicine intake. Curci et al. [33] developed a wearable sensing
system consisting of a smartphone and a RFID tag to detect the medicine intake activity. MoviPill [34] designed
a mobile persuasive social game for improving the medication adherence for elders. Lee et al. [35] developed
a self-management system consisting of an electronic pillbox and an ambient display to provide the real-time
feedback of the medicine intake.
Our work, however, is diferent from existing work above. Considering the fact that medicine relieves the

Parkinsonism gait, PDMovemeasures the daily-life gait variability to achieve the medication adherence monitoring.

8.2 Wearable and Mobile Technologies for Parkinsonism Gait Detection

PD detection using mobile technologies becomes a hot topic recently [36ś39]. Gait analysis is one of the most
conventional approaches. Moore et al. [40] adopted wearable sensors to achieve detection of Freezing of Gait
(FOG). Mazilu et al. [41] achieved FOG detection with a smartphone-based system. Speciically, the smartphone
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is adopted as a computing unit, and the external sensors achieve the gait data collection. Based on this work,
Wang et al. [42] published an extension in which the smartphone is also viewed as a computing unit, and FOG
measurement is inished by an accelerometer mounted on the back of the patient.

Most work focuses on detection of Parkinson’s disease. The data is collected from both PD patients and healthy
humans, and their objective is to screen the PD patients from healthy humans. Instead, our objective is to achieve
medication adherence monitoring of PD patients by accessing the daily-life motor luctuation using a smartphone.

9 IMPLICATION

In this section, we discuss the extension of PDMove, including medication efectiveness detection and precise
medicine.
Medication Efectiveness Detection: As the disease progresses, drugs become less efective, and PD patients
can progressively develop resistance to medicine. Once medicines lose efectiveness, they no longer relieve the
PD symptoms while still causing side efects, such as involuntary twisting movements [43]. Existing studies ind
that "medicine lose efectiveness" widely exists, showing that about 40% of PD patients realize that the drugs are
becoming less efective after several years of medication treatment [44]. Accordingly, patients are encouraged to
frequently visit the clinics in order to understand their recovery conditions timely and adjust their treatments
if necessary. However, resources, such as economic conditions, travel distance, and increasing disability, can
prevent patients from frequent visits [43]. As a passive mobile sensing system, PDMove can continuously detect
medication efectiveness and remind the user when drugs are losing efectiveness. Then PD patients can schedule
an appointment with the physicians in good time.

Personalized Prescription and Precise Medicine: Due to the diferent physical condition and disease severity,
the therapeutic efect can vary from person to person. Nowadays, clinical medicine agrees that doctors are
responsible for adjusting the medicine type (e.g., Levodopa, Dopamine agonists and MAO-B inhibitors) and
treatment plan (daily dosage) for each individual. Improper medicine and unsafe doses will only aggravate motor
symptoms, such as increasing the risk of falling [45], rather than provide relief. However, precise medicine in
practice is actually challenging. First, PD progression varies among diferent individuals [46]. Second, everyone
metabolism ability is diferent. The existing assessment usually relies on the clinical tests and self-report from
patients, and thereby the prescription given by a doctor can exist bias with an occasional visit. Instead, PDMove

can provide doctors the detailed information of the gait variability in daily, such as the medicine efectiveness
and duration of eicacy, to assist doctors to optimize the prescription.

10 LIMITATION

PDMove marks a closer step towards passive medication adherence monitoring of PD in daily life. However, it
exhibits some limitations. First, current data collection is active and each participant is instructed by an APP to
walk twenty steps. This limitation can be addressed by deploying more experiments to understand its performance
in real life in the future. Second, PDMove builds on the phenomenon that impaired gait responds to dopaminergic
therapy. This performance may degenerate on subjects whose gait impairment are inconspicuous. We plan to
explore the scalability of PDMove further, and develop a person-center protocol.

11 CONCLUSION

In this paper, we presented, PDMove, the irst smartphone-based system that compares the diferent gait pattern,
before and after taking medication, to facilitate the continuous medication adherence monitoring in daily life. It
works by sensing gait through the built-in accelerometer and gyroscope, segmentation of gait cycle and detection
via a convolutional neural network with a multi-view input architecture. PDMove demonstrates the signiicant
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advantages and is a promising step in the real-world deployment of a passive-sensing protocol in the mobile
system towards a large population in the future.
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